Skip to main content
Log in

Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fodder yeast Candida utilis is able to use xylose mono- and oligomers as sources of carbon but not the abundant polymer xylan. C. utilis transformants producing the Penicillium simplicissimum xylanase XynA were constructed using expression vectors encoding fusions of the Saccharomyces cerevisiae Mfα1 pre-pro secretion leader to XynA. The Mfα1-XynA fusion was efficiently processed in transformants and XynA was secreted almost quantitatively into the culture medium. Secreted XynA was enzymatically active and allowed transformants to grow on xylan as the sole carbon source. Addition of a second expression unit for the heterologous green fluorescent protein (GFP) generated C. utilis transformants, which showed intracellular GFP fluorescence during growth on xylan. The results suggest that xylanase-producing C. utilis is suited as a cost-effective host organism for heterologous protein production and for other biotechnical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bekatorou A, Psaríanos C, Koutinas AA (2006) Production of food grade yeasts. Food Technol Biotechnol 44:407–415

    Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  • Buerth C, Heilmann CJ, Klis FM, de Koster CG, Ernst JF, Tielker D (2011) Growth-dependent secretome of Candida utilis. Microbiology 157:2493–2503

    Article  CAS  PubMed  Google Scholar 

  • Caplan S, Green R, Rocco J, Kurjan J (1991) Glycosylation and structure of the yeast MFα1-factor precursor is important for efficient transport through the secretory pathway. J Bacteriol 173:627–635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37:872–914

    Article  CAS  PubMed  Google Scholar 

  • Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Lidén G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1:2–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gübitz GM, Haltrich D, Latal B, Steiner W (1997) Mode of depolymerisation of hemicellulose by various mannanases and xylanases in relation to their ability to bleach softwood pulp. Appl Microbiol Biotechnol 4:658–662

    Google Scholar 

  • Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1:1-11

  • Hong YR, Chen YL, Farh L, Yang WJ, Liao CH, Shiuan D (2006) Recombinant Candida utilis for the production of biotin. Appl Microbiol Biotechnol 71:211–221

    Article  CAS  PubMed  Google Scholar 

  • Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417

    Article  CAS  PubMed  Google Scholar 

  • Ikushima S, Fujii T, Kobayashi O (2009) Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system. Biosci Biotechnol Biochem 73:879–884

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

  • Katahira S, Fujita Y, Mizuike, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

  • Kim B, Du J, Eriksen DT, Zhao H (2013) Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol 79:931-941

  • Kondo K, Miura Y, Sone H, Kobayashi K, Iijima H (1997) High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15:453–457

    Article  CAS  PubMed  Google Scholar 

  • Kunigo M, Buerth C, Tielker D, Ernst JF (2013) Heterologous protein secretion by Candida utilis. Appl Microbiol Biotechnol 97:7357–7368

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts—a taxonomic study. Elsevier Science, Amsterdam

    Google Scholar 

  • Lee H, Biely P, Latta RK, Barbosa M, Schneider H (1986) Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. Appl Environ Microbiol 52:320–324

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53

    Article  CAS  PubMed  Google Scholar 

  • Minter DW (2009) Cyberlindnera, a replacement name for Lindnera Kurtzman et al. nom. illegit. Mycotaxon 110:473–476

    Article  Google Scholar 

  • Obrdlik P, El-Bakkoury M, Hamacher T, Cappellaro C, Vilarino C, Fleischer C, Ellerbrok H, Kamuzinzi R, Ledent V, Blaudez D, Sanders D, Revuelta JL, Boles E, André B, Frommer WB (2004) K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc Natl Acad Sci USA 101:12242–12247

  • Öczan S, Kötter P, Ciriacy M (1991) Xylan hydrolysing enzymes of the yeast Pichia stipitis. Appl Microbiol Biotechnol 36:190–195

    Article  Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081–2088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt A, Gübitz GM, Kratky C (1999) Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant. Biochemistry 38:2403–2412

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Sherman F, Fink G, Hicks J (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Tamakawa H, Ikushima S, Yoshida S (2011) Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase. Biosci Biotechnol Biochem 75:1994–2000

    Article  CAS  PubMed  Google Scholar 

  • Tamakawa H, Ikushima S, Yoshida S (2012) Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J Biosci Bioeng 113:73–75

    Article  CAS  PubMed  Google Scholar 

  • Toivola A, Yarrow D, van den Bosch E, van Dijken JP, Scheffers WA (1984) Alcoholic fermentation of D-xylose by yeasts. Appl Environ Microbiol 47:1221–1223

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomita Y, Ikeo K, Tamakawa H, Gojobori T, Ikushima S (2012) Genome and transcriptome analysis of the food-yeast Candida utilis. PLoS One 7:e37226

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, LaButti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci U S A 108:13212–13217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanai T, Sato M (2001) Purification and characterization of an β-D-xylosidase from Candida utilis IFO 0639. Biosci Biotechnol Biochem 65:527–533

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Jeppsson H, Hahn-Hägerdal B (1995) Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Appl Microbiol Biotechnol 44:314–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Cluster of Industrial Biotechnology NRW CLIB2021.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim F. Ernst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunigo, M., Buerth, C. & Ernst, J.F. Secreted xylanase XynA mediates utilization of xylan as sole carbon source in Candida utilis . Appl Microbiol Biotechnol 99, 8055–8064 (2015). https://doi.org/10.1007/s00253-015-6703-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6703-1

Keywords

Navigation