Skip to main content
Log in

Recombinant Candida utilis for the production of biotin

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotin is an important nutritional supplement but is difficult to manufacture effectively. Here we present a trial of biotin production using the food yeast Candida utilis. In this system, we cloned the C. utilis biotin synthase (BIO2) gene, the gene of the rate-limiting enzyme for biotin biosynthesis, and assembled it under the control of a strong promoter. A series of plasmids were constructed to direct the integration of the BIO2 gene, either high-copy integration with 18S rDNA fragment or low-copy integration with URA3 or HIS3 fragment. The BIO2 gene can be successfully integrated into the C. utilis chromosome and can drive biotin production using these plasmids. The biotin yield in this system can reach 100-fold above the endogenous level in a small-scale culture. Although the biotin production is not stable if the selection pressure is removed, this system has the potential to produce biotin-rich feed or food additives directly without the requirement of further purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bachmann BJ (1983) Linkage map of Escherichia coli K-12. Microbiol Rev 47:180–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker DF, Campbell A (1981) Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol 153:469–492

    Article  Google Scholar 

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 198:182–187

    Article  Google Scholar 

  • Bower S, Perkins JB, Yocum RR, Howitt CL, Rahaim P, Pero J (1996) Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol 178:4122–4130

    Article  CAS  Google Scholar 

  • Bower S, Perkins JB, Yocum RR, Pero JG (2001) Biotin biosynthesis in Bacillus subtilis. US Patent 6,303,377

  • DeBaets S, Vandedrinck S, Vandamme EJ (2000) Vitamins and related biofactors, microbial production. In: Lederberg J (ed) Encyclopedia of microbiology, vol 4, 2nd edn. Academic, New York, pp 837–853

    Google Scholar 

  • Elena GMM, Edenia P, Tanilo RB, Liliana BT, Pabl CEF, Marcos DBJ, Luis RM (1998) Candida utilis transformation system. Worldwide Patent WO 9814600

  • Farh L, Hwang SY, Steinrauf L, Chiang HJ, Shiuan D (2001) Structure-function studies of Escherichia coli biotin synthase via a chemical modification and site-directed mutagenesis approach. J Biochem (Tokyo) 30:627–635

    Article  Google Scholar 

  • Fleckenstein J, Kraemer B, Veits J (2001) Process for preparing biotin. US Patent 6,291,681

  • Flint DH (1996) Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobactor vinelandii and that can participate in the synthesis of the Fe–S cluster of dihydroxy-acid dehydratase. J Biol Chem 271:16068–16074

    Article  CAS  Google Scholar 

  • Furuichi Y, Hoshino T, Kimura H, Kiyasu T, Nagahashi Y (2000) Biotin biosynthetic genes. US Patent 6,117,669

  • Gloeckler R, Ohsawa I, Speck D, Ledoux C, Bernard S, Zinsius M, Villeval D, Kisou T, Kamogawa K, Lemoine Y (1990) Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene 87:63–70

    Article  CAS  Google Scholar 

  • Guianvarch D, Florentin D, Tse Sum Bui B, Nunzi F, Marquet A (1997) Biotin synthase, a new member of the family of enzymes which uses S-adenosylmethionine as a source of deoxyadenosyl radical. Biochem Biophys Res Commun 236:402–406

    Article  CAS  Google Scholar 

  • Ifuku O, Kishimoto J, Haze SI, Yanagi M, Fukushima S (1992) Conversion of dethobiotin to biotin in cell-free extracts of Escherichia coli. Biosci Biotechnol Biochem 56:1780–1785

    Article  CAS  Google Scholar 

  • Ifuku O, Haze S, Kishimoto J, Nakahama K (1999) Biotin operon. US Patent 4,884,792

  • Jameson GN, Cosper MM, Hernadez HL, Johnson MK, Huynh BH (2004) Role of the [2Fe–2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43:2022–2031

    Article  CAS  Google Scholar 

  • Kanzaki N, Kawamoto T, Matsui J, Nakahama K, Ifuku O (2001) Microorganism resistant to threonine analogue and production of biotin. US Patent 6,284,500

  • Kawai S, Murao S, Mochizuki M, Shibuya I, Yano K, Takagi M (1992) Drastic alteration of cycloheximide sensitivity by substitution of one amino acid in the L41 ribosomal protein of yeasts. J Bacteriol 174:254–262

    Article  CAS  Google Scholar 

  • Kessler DA, Taylor MR, Maryanski JH, Flamm EL, Kahl LS (1992) The safety of foods developed by biotechnology. Science 256:1747–1749

    Article  CAS  Google Scholar 

  • Kiyasu T, Asakura A, Nagahashi Y, Hoshino T (2000) Contribution of cysteine desylfurase (NifS protein) to the biotin synthase reaction of Escherichia coli. J Bacteriol 182:2879–2885

    Article  CAS  Google Scholar 

  • Kondo K, Saito T, Kajiwara S, Takagi M, Misawa N (1995) A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J Bacteriol 177:7171–7177

    Article  CAS  Google Scholar 

  • Kondo K, Miura Y, Sone H, Kobayashi K, Lijima H (1998) High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15:453–457

    Article  Google Scholar 

  • Kunkel TA (1987) Rapid and efficient mutagenesis without phenotypic selection. Methods Enzymol 154:367–382

    Article  CAS  Google Scholar 

  • Layer G, Heinz DW, Jahn D, Schubert W (2004) Structure and function of radical SAM enzymes. Curr Opin Chem Biol 8:468–476

    Article  CAS  Google Scholar 

  • Ohshiro T, Yamamoto M, Izumi Y, Bui BT, Florentin D, Marquet A (1994) Enzymatic conversion of dethiobiotin to biotin in cell-free extracts of a Bacillus sphaericus bioB transformant. Biosci Biotechnol Biochem 58:1738–1741

    Article  CAS  Google Scholar 

  • Phillippsen P, Stotz A, Scherf C (1991) DNA of Saccharomyces cerevisiae. Methods Enzymol 194:169–182

    Article  Google Scholar 

  • Sakurai N, Imai Y, Masuda M, Komatsubara S, Sota T (1994) Improvement of a d-biotin-hyperproducing recombinant strain of Serratia marcescens. J Biotechnol 36:63–73

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with the chain termination inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  Google Scholar 

  • Shiuan D, Campbell A (1988) Transcriptional regulation and gene arrangement of Escherichia coli, Citrobacter freundii and Salmonella typhimurium biotin operons. Gene 67:203–211

    Article  CAS  Google Scholar 

  • Shiuan D, Wu CH, Chang YS, Chang RJ (1997) Competitive enzyme-linked immunosorbent assay for biotin. Methods Enzymol 279:321–326

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequence among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  Google Scholar 

  • Streit WR, Entcheva P (2003) Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 61:21–31

    Article  CAS  Google Scholar 

  • Streit WR, Phillip DA (1996) Recombinant Rhizobium meliloti strains with extra biotin synthesis capability. Appl Environ Microbiol 62:3333–3338

    Article  CAS  Google Scholar 

  • Weaver LM, Yu F, Wurtele ES, Nikolau BJ (1996) Characterization of the cDNA and gene coding for the biotin synthase of Arabidopsis thaliana. Plant Physiol 110:1021–1028

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  Google Scholar 

  • Zhang S, Sanyal I, Bulboaca GH, Rich A, Flint DH (1994) The gene for biotin synthase for Saccharomyces cerevisiae: cloning, sequencing, and complementation of Escherichia coli strains lacking biotin synthase. Arch Biochem Biophys 309:29–35

    Article  CAS  Google Scholar 

  • Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters: identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the research grants from National Science Council ROC (NSC89-2317-B110-001, NSC89-2622-B110-001, and NSC92-2311-B259-003). We also thank Professor Kuo-Chih Lin for reading the manuscript and for many valuable suggestions and the Taiwan Sugar Research Institute of Taiwan Sugar Company for their support of the work through the Academy-Enterprise Cooperation Project managed by the National Science Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shiuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, YR., Chen, YL., Farh, L. et al. Recombinant Candida utilis for the production of biotin. Appl Microbiol Biotechnol 71, 211–221 (2006). https://doi.org/10.1007/s00253-005-0133-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0133-4

Keywords

Navigation