Skip to main content
Log in

Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of pH and dilution rate on the production of extracellular metabolites of Lactobacillus salivarius UCO_979 was studied. The experiments were carried out in continuous mode, with chemically defined culture medium at a temperature of 37 °C, 200 rpm agitation and synthetic air flow of 100 ml/min. Ethanol, acetic acid, formic acid, lactic acid and glucose were quantified through HPLC, while exopolysaccharide (EPS) was extracted with ethanol and quantified through the Dubois method. The results showed no linear trends for the specific production of lactic acid, EPS, acetic acid and ethanol, while the specific glucose consumption and ATP production rates showed linear trends. There was a metabolic change of the strain for dilution rates below 0.3 h−1. The pH had a significant effect on the metabolism of the strain, which was evidenced by a higher specific glucose consumption and increased production of ATP at pH 6 compared with that obtained at pH 7. This work shows not only the metabolic capabilities of L. salivarius UCO_979C, but also shows that it is possible to quantify some molecules associated with its current use as gastrointestinal probiotic, especially regarding the production of organic acids and EPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai D, Zhao X, Li X, Xu S (2004) Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Biotechnol Bioeng 88:681–689

    Article  CAS  PubMed  Google Scholar 

  • Benthin S, Schulze U, Nielsen J, Villadsen J (1994) Growth energetics of Lactocuccus cremoris FD1 during energy, carbon and nitrogen limitation in steady state and transient cultures. Chem Eng Sci 49:589–609

    Article  CAS  Google Scholar 

  • Bergmaier D, Champagne CP, Lacroix C (2005) Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW‐9595 M. J Appl Microbiol 98:272–284

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Humarán L, Aubry C, Motta J, Deraison C, Steidler L, Vergnolle N, Chatel J, Langella P (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283

    Article  PubMed  Google Scholar 

  • Berry A, Franco C, Zhang W, Middelberg A (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol Lett 21:163–167

    Article  CAS  Google Scholar 

  • Bibal B, Goma G, Vayssier Y, Pareilleux A (1988) Influence of pH, lactose and lactic acid on the growth of Streptococcus cremoris: a kinetic study. Appl Microbiol Biotechnol 28:340–344

    Article  CAS  Google Scholar 

  • Boonmee M, Leksawasdi N, Bridge W, Rogers P (2003) Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochem Eng J 14:127–135

    Article  CAS  Google Scholar 

  • Bouguettoucha A, Nacef S, Balannec B, Amrane A (2009) Unstructured models for growth and lactic acid production during two-stage continuous cultures of Lactobacillus helveticus. Process Biochem 44:742–748

    Article  CAS  Google Scholar 

  • Brooijmans RJ, de Vos WM, Hugenholtz J (2009) Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 75:3580–3585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castillo F, Balciunas E, Salgado J, Domınguez J, Converti A, Pinheiro de Souza R (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83

    Article  Google Scholar 

  • Chisti Y (1989) Airlift bioreactors. Elsevier Science Publishers LTD

  • Claesson M, Li Y, Leahy S, Canchaya C, van Pijkeren J, CerdeñoTárraga A, Parkhill J, Flynn S, O’Sullivan G, Collins J, Higgins D, Shanahan F, Fitzgerald G, van Sinderen D, O’Toole P (2006) Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103:6718–6723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cogan J, Condon W (1989) Impact of aeration on the metabolic end-products formed from glucose and galactose by Streptococcus lactis. J Appl Bacteriol 66:77–84

    Article  CAS  Google Scholar 

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46:269–280

    Article  CAS  Google Scholar 

  • De Vries W, Kapteijn W, Van der Beek E, Stouthamer A (1970) Molar growth yields and fermentation balances of Lactobacillus casei L 3 in batch cultures and continuous cultures. J Gen Microbiol 63:333–345

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Even S, Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1999) Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Metab Eng 1:198–205

    Article  CAS  PubMed  Google Scholar 

  • Fernández M, Zúñiga M (2006) Aminoacid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183

    Article  PubMed  Google Scholar 

  • Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767

    Article  PubMed Central  PubMed  Google Scholar 

  • García A, Henríquez P, Retamal C, Pineda S, Delgado C, Gonzales C (2009) Propiedades probióticas de Lactobacillus spp aislados de biopsias gástricas de pacientes con y sin infección por Helicobacter pylori. Rev Med Chil 137:369–376

    Google Scholar 

  • García A, Sáez K, Delgado C, González CL (2012) Low co-existence rates of Lactobacillus spp. and Helicobacter pylori detected in gastric biopsies from patients with gastrointestinal symptoms. Rev Esp Enferm Dig 104:473–478

    Article  PubMed  Google Scholar 

  • Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44:106–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaspar P, Carvalho A, Vinga S, Santos H, Neves A (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31:764–788

    Article  CAS  PubMed  Google Scholar 

  • Gassem MA, Sims KA, Frank JF (1997) Extracellular polysaccharide production by Lactobacillus delbrueckii subsp. Bulgaricus RR in a continuous fermentor. LWT-Food Sci Technol 30:273–278

    Article  CAS  Google Scholar 

  • Goncalves L, Ramos A, Almeida J, Xavier A, Carrondo M (1997) Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus. Appl Microbiol Biotechnol 48:346–350

    Article  CAS  Google Scholar 

  • Grobben G, Chin-Joe I, Kitzen V, Boels I, Boer F, Sikkema J, Smith M, de Bont J (1998) Enhancement of exopolysaccharide production by Lactobacillus delbrueckii subsp. Bulgaricus NCFB 2772 with a simplified defined medium. Appl Environ Microbiol 64:1333–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grobben G, van Casteren W, Schols H, Oosterveld A, Sala G, Smith M, Sikkema J, de Bont J (1997) Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl Microbiol Biotechnol 48:516–521

    Article  CAS  Google Scholar 

  • Gros J, Dussap C, Catte M (1999) Estimation of O2 and CO2 solubility in microbial cultures media. Biotechnol Prog 15:923–927

    Article  CAS  PubMed  Google Scholar 

  • Hanson T, Tsao G (1972) Kinetic studies of the lactic acid fermentation in batch and continuous cultures. Biotechnol Bioeng 14:233–252

    Article  CAS  Google Scholar 

  • Hua Q, Fu P, Yang C, Shimizu K (1998) Microaerobic lysine fermentations and metabolic flux analysis. Biochem Eng J 2:89–100

    Article  CAS  Google Scholar 

  • Hughmark G (1980) Power requirements and interfacial area in gas–liquid turbine agitated systems. Ind Eng Chem Process Des Dev 19:638–641

    Article  CAS  Google Scholar 

  • Hutkins R, Nannen N (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365

    Article  CAS  Google Scholar 

  • Jarman T, Pace G (1984) Energy requirements for microbial exopolysaccharide synthesis. Arch Microbiol 137:231–235

    Article  CAS  Google Scholar 

  • Jorgensen M, Nikolajsen K (1987) Mathematic model for lactic acid formation with Streptococcus cremoris from glucose. Appl Microbiol Biotechnol 25:313–316

    Article  Google Scholar 

  • Kashket E (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 46:233–244

    Article  CAS  Google Scholar 

  • Ko Y, Bentley W, Weigand W (1993) An integrated metabolic modeling approach to describe the energy efficiency of Escherichia coli fermentations under oxygen-limited conditions: cellular energetics, carbon flux, and acetate production. Biotechnol Bioeng 42:843–853

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157:175–188

    Article  CAS  PubMed  Google Scholar 

  • Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, Gaudu P, Gruss A (2011) Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol 22:1–7

    Article  Google Scholar 

  • Lee Y, Salminen S (2009) Handbook of probiotics and prebiotics. Second edition, John Wiley & Sons, Inc

  • Liu S (2003) Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J Food Microbiol 83:115–131

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour Technol 101:5528–5533

    Article  CAS  PubMed  Google Scholar 

  • Looijesteijn P, van Casteren W, Tuinier R, Doeswijk-Voragen C, Hugenholtz J (2000) Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. J Appl Microbiol 89:116–122

    Article  CAS  PubMed  Google Scholar 

  • Luedeking R, Piret E (1959) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–412

    Article  CAS  Google Scholar 

  • Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert J-M, Dousset X (2013) Lactobacillus salivarius: bacteriocin and probiotic activity. Food Microbiol 36:296–304

    Article  CAS  PubMed  Google Scholar 

  • Monod J (1950) La technique de culture continue. Theorie et applications. Ann I Pasteur Paris 79:390–410

    CAS  Google Scholar 

  • Mozzi F, Savoy de Giori G, Font de Valdez G (2003) UDP-galactose 4-epimerase: a key enzyme in exopolysaccharide formation by Lactobacillus casei CRL 87 in controlled pH batch cultures. J Appl Microbiol 94:175–183

    Article  CAS  PubMed  Google Scholar 

  • Neville B, O’Toole P (2010) Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiol 760:5(5)

    Google Scholar 

  • Nielsen J, Villadsen J, Lidén G (2011) Bioreaction engineering principles. Springer Velag

  • Ohara H, Hiyama K, Yoshida T (1992) Kinetics of growth and lactic acid production in continuous and batch culture. Appl Microbiol Biotechnol 37:544–548

    Article  CAS  Google Scholar 

  • Pan D, Mei X (2010) Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydr Polym 80:908–914

    Article  CAS  Google Scholar 

  • Pedersen M, Gaudu P, Lechardeur D, Petit M, Gruss A (2012) Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol 3:37–58

    Article  CAS  PubMed  Google Scholar 

  • Pinelli D, González Vara A, Matteuzzi D, Magelli F (1997) Assessment of kinetic models for the production of l- and d-lactic acid isomers by Lactobacillus casei DMS 20011 and Lactobacillus coryniforrnis DMS 20004 in continuous fermentation. J Ferment Bioeng 83:209–212

    Article  CAS  Google Scholar 

  • Pirt S (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163:224–231

    Article  CAS  PubMed  Google Scholar 

  • Rezaiki L, Lamberet G, Derre A, Gruss A, Gaudu P (2008) Lactococcus lactis produces short-chain quinones that cross-feed group B Streptococcus to activate respiration growth. Mol Microbiol 67:947–957

    Article  CAS  PubMed  Google Scholar 

  • Richards IW (1963) Power input to fermenters and similar vessels. Br Chem Eng 8:158–163

    CAS  Google Scholar 

  • Rodriguez M, de la Torre M (1996) Effect of the dilution rate on the biomass yield of Bacillus thuringiensis and determination of its rate coefficients under steady-state conditions. Appl Microbiol Biotechnol 45:546–550

    Article  Google Scholar 

  • Roels J (1980) Simple model for the energetics of growth on substrates with different degrees of reduction. Biotechnol Bioeng 23:33–53

    Article  Google Scholar 

  • Rogers PL, Bramall L, McDonald IJ (1978) Kinetic analysis of batch and continuous culture of Streptococcus cremoris HP. Can J Microbiol 24:372–380

    Article  CAS  PubMed  Google Scholar 

  • Rogosa M, Wiseman RF, Mitchell JA, Disraely MN, Beaman AJ (1953) Species differentiation of oral lactobacilli from man including descriptions of Lactobacillus salivarius nov.spec. and Lactobacillus cellobiosus nov. spec. J Bacteriol 65:681–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salminen S, von Wright A, Ouwehand A (2004) Lactic acid bacteria. Marcel Dekker, Inc

  • Savadogo A, Cheik T, Ouattara W, Savadogo B, Aboubacar S, Ouattara S, Traeré (2004) Identification Lactobacillus casei exploiting microfiltration. J Ind Microbiol 33:384–390

    Google Scholar 

  • Shene C, Bravo S (2007) Whey fermentation by Lactobacillus delbrueckii subsp. bulgaricus for exopolysaccharide production in continuous culture. Enzyme Microb Technol 40:1578–1584

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic engineering. Principles and methodologies. London Academic Press

  • Stouthamer A, Bettenhaussem C (1973) Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim Biophys Acta 301:53–70

    Article  CAS  PubMed  Google Scholar 

  • Tachon S, Chambellon E, Yvon M (2011) Identification of a conserved sequence in flavoproteins essential for the correct conformation and activity of the NADH oxidase NoxE of Lactococcus lactis. J Bacteriol 193:3000–3008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teusink B, Bachmann H, Molenaar D (2011) Systems biology of lactic acid bacteria: a critical review. Microb Cell Fact 10(Suppl 1):S11

    Article  PubMed Central  PubMed  Google Scholar 

  • Thierie J (2013) Computing and interpreting specific production rates in a chemostat in steady state according to the Luedeking–Piret model. Appl Biochem Biotechnol 169:477–492

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Ellwood D, Longyear M (1979) Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138:109–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tribe L, Briens C, Margaritis A (1995) Determination of the volumetric mass transfer coefficient (kLa) using the dynamic “Gas Out-Gas In” method: analysis of errors caused by dissolved oxygen probes. Biotechnol Bioeng 4:388–392

    Article  Google Scholar 

  • Tseng C, Tsau J, Montville T (1991) Bioenergetic consequences of catabolic shifts by Lactobacillus plantarum in response to shifts in environmental oxygen and pH in chemostat cultures. J Bacteriol 73:4411–4416

    Google Scholar 

  • Van’t Riet K (1979) Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels. Ind Eng Chem Process Des Dev 18:357–364

    Article  Google Scholar 

  • Vera Pingitore E, Hebert E, Sesma F, Nader-Macías M (2009) Influence of vitamins and osmolites on bacteriocin production by Lactobacillus salivarius CRL 1328 in a chemically defined medium. Can J Microbiol 55:304–310

    Article  PubMed  Google Scholar 

  • Wang D, Cooney Ch, Demain A, Dunnil P, Humphrey A, Lilly M (1978) Fermentation and enzyme technology. John Wiley & Sons

  • Welman A, Maddox I, Archer R (2003) Exopolysaccharide and extracellular metabolite production by Lactobacillus delbrueckii subsp. bulgaricus, grown on lactose in continuous culture. Biotechnol Lett 25:1515–1520

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X (2013) Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54:270–275

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study received financial support from Conicyt, Chile (Javier Ferrer doctoral thesis) and Javier Ferrer Fondecyt thesis support (N° 24121273, Chile).

Ethical statement

The authors comply with the ethical responsibilities and ethical standards described in the instructions for authors of “Applied Microbiology and Biotechnology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ferrer Valenzuela.

Additional information

Javier Ferrer Valenzuela holds a doctorate degree, Universidad de Concepción.

Luis Pinuer holds an MD, Universidad de Concepción.

Dr. Apolinaria García Cancino holds a doctorate degree, Universidad de Concepción.

Dr. Rodrigo Bórquez Yáñez holds a doctorate degree, Universidad de Concepción.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, J.F., Pinuer, L., Cancino, A.G. et al. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture. Appl Microbiol Biotechnol 99, 6417–6429 (2015). https://doi.org/10.1007/s00253-015-6526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6526-0

Keywords

Navigation