Skip to main content
Log in

Effect of the dilution rate on the biomass yield ofBacillus thuringiensis and determination of its rate coefficients under steady-state conditions

  • Applied microbial and cell physiology
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Depending on the biomass yield on glucose and the cell morphology ofBacillus thuringiensis, three different metabolic states were observed in continuous culture. At dilution rates between 0.18 h−1 and 0.31 h−1 vegetative cells, sporulating bacteria and spores coexisted, while glucose and amino acids were consumed. Only vegetative cells were observed at dilution rates between 0.42 h−1 and 0.47 h−1 and glucose was used as the main carbon and energy source. AtD = 0.50 h−1 the biomass yield on glucose decreases sharply. To define better the specific growth rate range in which the microorganism uses mainly glucose, a dilution rate of 0.25–0.45 h−1 was studied. The experimental data could be adjusted to a Monod model and the following rate coefficients and growth yields were determined: maximum specific growth rate 0.54 h−1, saturation constant 0.56 mg glucose ml−1, biomass growth yields 0.43 g cells (g glucose)−1, and 0.76 g cells (g oxygen)−1, and maintenance coefficients 0.065 g glucose (g cells)−1 h−1 and 0.039 g oxygen (g cells)−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson TB (1990) Effects of carbons:nitrogen ratio and oxygen on the growth kinetics ofBacillus thuringiensis and yield bioinsecticidal crystal protein. MSc Thesis, The University of Western Ontario, Canada

    Google Scholar 

  • Arcas J, Yantorno O, Ertola R (1987) Effect of high concentration of nutrients onBacillus thuringiensis cultures. Biotechnol Lett 9:105–110

    Google Scholar 

  • Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook, 2nd edn. Ellis Horwood, New York, pp 136–155, 178

    Google Scholar 

  • Avignose-Rossa C, Mignone C (1993) Delta-endotoxin activity and spore production in batch and fed-batch cultures ofBacillus thuringiensis. Biotechnol Lett 15:295–300

    Google Scholar 

  • Brousseau R, Masson L (1988) Biochemistry of sporulation ofBacillus thuringiensis insecticidal crystal toxins: gene structure and mode of action. Biotechnol Adv 6:697–724

    Google Scholar 

  • Byung Ch, Sang Y, Ho N (1992) Enhanced spore production ofBacillus thuringiensis by fed-batch culture. Biotechnol Lett 14:721–726

    Google Scholar 

  • Dawes IW, Mandelstam J (1969) Biochemistry of sporulation ofBacillus subtilis 169. Continuous culture studies. In: Malek I, Beyan K, Fenel Z, Munk V, Ricica J, Smrková H. (eds) Continuous cultivation of microorganism, Academic Press, Prague, pp 157–162

    Google Scholar 

  • Dawes IW, Thorley HM (1970) Sporulation inBacillus subtilis. Theoretical and experimental studies in continuous culture systems. J Gen Microbiol 62:49–66

    Google Scholar 

  • Dawes IW, Kay D, Mandelstam J (1969) Sporulation inBacillus subtilis. Establishment of a time scale for the morphological events. J Gen Microbiol 56:171–179

    Google Scholar 

  • Ertola R (1988) Production ofBacillus thuringiensis insecticides. In: Aiba S (ed) Horizons of biochemical engineering. Oxford University Press, New York, pp 187–202

    Google Scholar 

  • Holmberg A, Sievanen R, Carlberg G (1980) Fermentation ofBacillus thuringiensis for exotoxin production: process analysis study. Biotechnol Bioeng 22:1707–1724

    Google Scholar 

  • Käppeli O, Fiechter A (1981) On the methodology of oxygen transfer coefficient measurements. Biotechnol Lett 3:541–546

    Google Scholar 

  • Mercado MM (1994) Efectos de la limitación de oxígeno a partir de la fase de transición en el metabolismo y producción de delta endotoxina deBacillus thuringiensis. MSc Thesis, CINVESTAV-IPN México

    Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:26–428

    Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Wiley, New York, pp 63–70

    Google Scholar 

  • Razo FE (1991) Estudios para el escalamiento de un proceso por lote de nivel de laboratorio a planta piloto para la producción deBacillus thuringiensis. MSc Thesis, UNAM México

    Google Scholar 

  • Rodríguez MM (1991) Cultivo por lote alimentado para la producción de bioinsecticidas a base deBacillus thuringiensis. MSc Thesis, CINVESTAV-IPN México

    Google Scholar 

  • Rodriguez MM, Torre MM de la, De Urquijo E (1991)Bacillus thuringiensis: características biológicas y perspectivas de producción. Rev Latinoamer Microbiol 33:279–292

    Google Scholar 

  • Rowe GE (1990) Central metabolism ofBacillus thuringiensis during growth and sporulation. PhD, Thesis, University of Western Canada

    Google Scholar 

  • Rowe G, Margaritis A (1987) Bioprocess developments in the production of bioinsecticides byBacillus thuringiensis. Crit Rev Biotechnol 6:87–127

    Google Scholar 

  • Roy BP, Selinger LB, Khachatourians (1987) Plasmid stability ofBacillus thuringiensis (HD-1) during continuous phased cultivation. Biotechnol Lett 9:483–488

    Google Scholar 

  • Sakharova ZV, Ignatenko NY, Khourychev MP, Likov VP, Rabotnova IL, Shevtson VV (1984) Sporulation and crystal formation inBacillus thuringiensis with growth limitation media the nutrient sources. Microbiology 53:221

    Google Scholar 

  • Scragg AH (1988) Biotechnology for engineers. Ellis Horwood, Chichester, pp 192–197

    Google Scholar 

  • Selinger LB, Dawson SS, Khachatourians G (1988) Behavior ofBacillus thuringiensis var.kurstaki under continuous phased cultivation in a cyclone fermentor. Appl Microbiol Biotechnol 28:247–253

    Google Scholar 

  • Wakisaka Y, Masaki E, Nishimoto Y (1982) Formation of crystalline δ-endotoxin of polu-β-hydroxybutyric acid granules by asporogenous mutants ofBacillus thuringiensis. Appl Environ Microbiol 43:1473–1480

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez Monroy, M., de la Torre, M. Effect of the dilution rate on the biomass yield ofBacillus thuringiensis and determination of its rate coefficients under steady-state conditions. Appl Microbiol Biotechnol 45, 546–550 (1996). https://doi.org/10.1007/BF00578469

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00578469

Keywords

Navigation