Skip to main content

Advertisement

Log in

Dynamics of biomass composition and growth during recovery of nitrogen-starved Chromochloris zofingiensis

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of nitrogen replenishment on the kinetics of secondary carotenoids, triacylglycerol (TAG) and primary cell components was studied in nitrogen-starved Chromochloris zofingiensis (Chlorophyta), an oleaginous and carotenogenic microalga. Nitrogen resupplied after a period of starvation was initially consumed at a more than four times higher rate than in an equivalent nitrogen-replete culture. Simultaneously, chlorophylls, primary carotenoids, polar (membrane) lipids and proteins were rapidly produced. After 2 days, the contents of these primary metabolites, as well as the nitrogen consumption rate and the overall biomass production rate, had returned to values equivalent to those of cells grown under nitrogen-replete conditions, indicating that culture recovery required 2 days. Nitrogen resupply was immediately followed by rapid degradation of TAG and starch, suggesting that these metabolites served as carbon and energy source for the recovery process. Also, the secondary carotenoids canthaxanthin and ketolutein were rapidly degraded upon nitrogen resupply, whereas degradation of astaxanthin, the main secondary carotenoid, started only when the cells were fully recovered 2 days after nitrogen resupply. This is the first time that such culture recovery has been described in detail and, moreover, that astaxanthin was found to be not immediately degraded after nitrogen resupply. The observed rapid recovery of C. zofingiensis and the delay in astaxanthin degradation suggest that a repeated batch cultivation may result in a higher secondary carotenoid productivity than a series of classical single batch cultivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad I, Hellebust JA (1984) Nitrogen metabolism of the marine microalga Chlorella autotrophica. Plant Physiol 76:658–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-Amotz A (1996) Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). J Phycol 32:272–275

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boussiba S, Bing W, Yuan J-P, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604

    Article  CAS  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Breuer G, Evers WAC, de Vree JH, Kleinegris DMM, Martens DE, Wijffels RH, Lamers PP (2013a) Analysis of fatty acid content and composition in microalgae. J Vis Exp 80:e50628

    Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2013b) Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol 143:1–9

    Article  CAS  PubMed  Google Scholar 

  • Breuer G, de Jaeger L, Artus VPG, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol Biofuels 7:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • de Winter L, Klok AJ, Cuaresma Franco M, Barbosa MJ, Wijffels RH (2013) The synchronized cell cycle of Neochloris oleoabundans and its influence on biomass composition under constant light conditions. Algal Res 2:313–320

    Article  Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    Article  PubMed  Google Scholar 

  • Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Falkowski PG (1980) Light-shade adaptation in marine phytoplankton. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Press, pp 99–119

  • Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14

    Article  Google Scholar 

  • Feng P, Deng Z, Hu Z, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584

    Article  CAS  PubMed  Google Scholar 

  • Fernandes B, Teixeira J, Dragone G, Vicente AA, Kawano S, Bišová K, Přibyl P, Zachleder V, Vítová M (2013) Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour Technol 144:268–274

    Article  CAS  PubMed  Google Scholar 

  • Goncalves E, Johnson J, Rathinasabapathi B (2013) Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX 29. Planta 238:895–906

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic, London, pp 209–344

    Google Scholar 

  • Hipkin CR, Thomas RJ, Syrett PJ (1983) Effects of nitrogen deficiency on nitrate reductase, nitrate assimilation and photosynthesis in unicellular marine algae. Mar Biol 77:101–105

    Article  CAS  Google Scholar 

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45:577–607

    Article  CAS  Google Scholar 

  • Kliphuis AMJ, Janssen M, van den End EJ, Martens DE, Wijffels RH (2011) Light respiration in Chlorella sorokiniana. J Appl Phycol 23:935–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klok AJ, Martens DE, Wijffels RH, Lamers PP (2013a) Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour Technol 134:233–243

    Article  CAS  PubMed  Google Scholar 

  • Klok AJ, Verbaanderd JA, Lamers PP, Martens DE, Rinzema A, Wijffels RH (2013b) A model for customising biomass composition in continuous microalgae production. Bioresour Technol 146:89–100

    Article  CAS  PubMed  Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26:631–638

    Article  CAS  PubMed  Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

  • Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106:638–648

    Article  CAS  PubMed  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  CAS  PubMed  Google Scholar 

  • Lourenço SO, Barbarino E, Marquez UML, Aidar E (1998) Distribution of intracellular nitrogen in marine microalgae: basis for the calculation of specific nitrogen-to-protein conversion factors. J Phycol 34:798–811

    Article  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Mandalam RK, Palsson B (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol Bioeng 59:605–611

    Article  CAS  PubMed  Google Scholar 

  • Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014a) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242

    Article  CAS  Google Scholar 

  • Mulders KJM, Martens DE, Wijffels RH, Lamers PP (2014b) Effect of biomass concentration on secondary carotenoids and triacylglycerol (TAG) accumulation in nitrogen-depleted Chlorella zofingiensis. Algal Res 6, Part A:8–16

  • Mulders KJM, Weesepoel Y, Bodenes P, Lamers PP, Vincken J-P, Martens DE, Gruppen H, Wijffels RH (2014c) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol. doi:10.1007/s10811-014-0333-3

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  • Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

    Article  CAS  Google Scholar 

  • Pribyl P, Cepak V, Zachleder V (2013) Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris. J Appl Phycol 25:545–553

    Article  CAS  Google Scholar 

  • Rhiel E, Morschel E, Wehrmeyer W (1985) Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes in Cryptomonas maculata following nutrient deficiency. Protoplasma 129:62–73

    Article  CAS  Google Scholar 

  • Rise M, Cohen E, Vishkautsan M, Cojocaru M, Gottlieb HE, Arad SM (1994) Accumulation of secondary carotenoids in Chlorella zofingiensis. J Plant Physiol 144:287–292

    Article  CAS  Google Scholar 

  • Santos AM, Lamers PP, Janssen M, Wijffels RH (2013) Biomass and lipid productivity of Neochloris oleoabundans under alkaline-saline conditions. Algal Res 2:204–211

    Article  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solovchenko AE (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ J Plant Physiol 60:1–13

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Telfer A, Pascal A, Gall A (2008) Volume 4: natural functions. In: Britton G, Liaanen-Jensen S, Pfander H (eds) Carotenoids. Birkhäuser, Verlag, Basel, pp 189–211

  • Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20

    Article  CAS  Google Scholar 

  • Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ (1988) Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can J Bot Rev Can Botan 66:2083–2097

    CAS  Google Scholar 

  • Xiao Y, Zhang J, Cui J, Feng Y, Cui Q (2013) Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresour Technol 130:731–738

    Article  CAS  PubMed  Google Scholar 

  • Young EB, Berges JA, Dring MJ (2009) Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Physiol Plant 135:400–411

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Yannick Weesepoel of Wageningen University, Laboratory of Food Chemistry, for performing the pigment identification and quantification and helping with the Dumas analyses. This work was supported by FeyeCon D&I and by grants from Rijksdienst voor Ondernemend Nederland (Project no. FND09014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim J. M. Mulders.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulders, K.J.M., Lamers, P.P., Wijffels, R.H. et al. Dynamics of biomass composition and growth during recovery of nitrogen-starved Chromochloris zofingiensis . Appl Microbiol Biotechnol 99, 1873–1884 (2015). https://doi.org/10.1007/s00253-014-6181-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6181-x

Keywords

Navigation