Skip to main content

Advertisement

Log in

Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Avermectins (AVMs), produced by Streptomyces avermitilis MA-4680 (or ATCC 31267, NRRL 8165, NCBIM 12804), are 16-member macrocylic lactones that play very important functions as bactericidal and antiparasitic agents against nematodes and anthropods, as well as Mycobacterium tuberculosis H37Rv. Since its discovery in 1975, use of AVM has been widely spreading around the globe. To date, the whole genome sequence of S. avermitilis K139 has been acquired, in which the AVM biosynthetic gene cluster was the most highly investigated to mine the genes responsible for functional as well as regulatory roles. Therefore, significant progress has been achieved for understanding and manipulating the biosynthesis, improved production, regulation mechanism, side effects, as well as the resistance of AVMs and their derivatives. These findings will facilitate further strain improvement and biosynthesis of novel derivatives bearing stable and improved biological activities, as well as overcoming the resistance mechanism to open up a bright period for these compounds. In this review, we have summarized and analyzed the update in advanced progress in biochemistry and biotechnological approaches used for the production of AVMs and their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agari Y, Sakamoto K, Yutani K, Kuramitsu S, Shinkai A (2013) Structure and function of a TetR family transcriptional regulator, SbtR, from Thermus thermophilus HB8. Proteins 81(7):1166–1178

    Article  CAS  PubMed  Google Scholar 

  • Aikawa M, Lopes-Shikida SAR, Lemos MF, Pradella JGC, Padilla G (1999) Screening of spontaneous and induced mutants in Streptomyces avermitilis enhances avermectin production. Appl Microbiol Biotechnol 52(4):558–562

    Article  CAS  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Artho R, Schnyder M, Kohler L, Torgerson PR, Hertzberg H (2007) Avermectin-resistance in gastrointestinal nematodes of Boer goats and Dorper sheep in Switzerland. Vet Parasitol 144(1–2):68–73

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ, Molle V, Buttner MJ (2000) Sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182(16):4606–4616

  • Borgsteede FH, Dercksen DD, Huijbers R (2007) Doramectin and albendazole resistance in sheep in The Netherlands. Vet Parasitol 144(1–2):180–183

    Article  CAS  PubMed  Google Scholar 

  • Brenner SE (2001) A tour of structural genomics”. Nat Rev Genet 2(10):801–809

    Article  CAS  PubMed  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15(3):361–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhary AK, Dakal D, Sohng JK (2013) An insight into the “-omics” based engineering of Streptomyces for secondary metabolite overproduction. Biomed Res Int 2013:968518

  • Chen L, Lu Y, Chen J, Zhang W, Shu D, Qin Z, Yang S, Jiang W (2008) Characterization of a negative regulator AveI for avermectin biosynthesis in Streptomyces avermitilis NRRL 8165. Appl Microbiol Biotechnol 80(2):277–286

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Sun BH, Qu JP, Xu S, Li S (2013) Avermectin induced inflammation damage in king pigeon brain. Chemosphere 93(10):2528–2534

    Article  CAS  PubMed  Google Scholar 

  • Church GM (2006) Genomes for all. Sci Am 294(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Crump A, Omura S (2011) Ivermectin, “wonder drug” from Japan: the human use perspective. Proc Jpn Acad Ser B Phys Biol Sci 87(2):13–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • da Silva Neto JF, Koide T, Gomes SL, Marques MV (2007) The single extracytoplasmic-function sigma factor of Xylella fastidiosa is involved in the heat shock response and presents an unusual regulatory mechanism. J Bacteriol 189(2):551–560

    Article  PubMed Central  PubMed  Google Scholar 

  • Dent JA, Smith MM, Vassilatis DK, Avery L (2000) The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97(6):2674–2679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doan HT, Noh JH, Kim YH, Yoo MS, Reddy KE, Jung SC, Kang SW (2013) The efficacy of avermectins (ivermectin, doramectin and abamectin) as treatments for infestation with the tick Haemaphysalis longicornis on rabbits in Korea. Vet Parasitol 198(3–4):406–409

    Article  CAS  PubMed  Google Scholar 

  • Duong CT, Lee HN, Choi SS, Lee SY, Kim ES (2009) Functional expression of SAV3818, a putative TetR-family transcriptionalregulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species. J Microbiol Biotechnol 19(2):136–139

    Article  CAS  PubMed  Google Scholar 

  • Falzon LC, Menzies PI, Shakya KP, Jones-Bitton A, Vanleeuwen J, Avula J, Stewart H, Jansen JT, Taylor MA, Learmount J, Peregrine AS (2013) Anthelmintic resistance in sheep flocks in Ontario, Canada. Vet Parasitol 193(1–3):150–162

    Article  CAS  PubMed  Google Scholar 

  • Gaisser S, Kellenberger L, Kaja AL, Weston AJ, Lill RE, Wirtz G, Kendrew SG, Low L, Sheridan RM, Wilkinson B, Galloway IS, Stutzman-Engwall K, McArthur HA, Staunton J, Leadlay PF (2003) Direct production of ivermectin-like drugs after domain exchange in the avermectin polyketide synthase of Streptomyces avermitilis ATCC 31272. Org Biomol Chem 1(16):2840–2847

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Liu M, Liu J, Dai H, Zhou X, Liu X, Zhuo Y, Zhang W, Zhang L (2009) Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 100(17):4012–4016

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Liu M, Zhou X, Liu J, Zhuo Y, Gou Z, Xu B, Zhang W, Liu X, Luo A, Zheng C, Chen X, Zhang L (2010) Identification of avermectin-high-producing strains by high-throughput screening methods. Appl Microbiol Biotechnol 85(4):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Andersen EC, Shapiro JA, Gerke JP, Kruglyak L (2012) Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science 335(6068):574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Zhang X, Luo S, He F, Chen Z, Wen Y, Li J (2013) Novel TetR family transcriptional regulatior, SAV576, negatively controls avermectin biosynthesis in Streptomyces avermitilis. PLoS One 8(8):e71330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Zhao J, Li L, Chen Z, Wen Y, Li J (2010) The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics 283(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Horsberg TE (2012) Avermectin use in aquaculture. Curr Pharm Biotechnol 13(6):1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Howell SB, Burke JM, Miller JE, Terrill TH, Valencia E, Williams MJ, Williamson LH, Zajac AM, Kaplan RM (2008) Prevalence of anthelmintic resistance on sheep and goat farms in the southeastern United States. J Am Vet Med Assoc 233(12):1913–1919

    Article  PubMed  Google Scholar 

  • He F, Liu W, Sun D, Luo S, Chen Z, Wen Y, Li J (2014) Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 98(1):399–409

    Article  CAS  PubMed  Google Scholar 

  • Ho TD, Ellermeier CD (2012) Extracytoplasmic function σ factor activation. Curr Opin Microbiol 15(2):182–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horgan RP, Kenny LC (2011) SAC review “Omic” technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynae 13(3):189–195

    Google Scholar 

  • Ichikawa S, Kaji A (1989) Molecular cloning and expression of ribosome releasing factor. J Biol Chem 264(33):20054–20059

    CAS  PubMed  Google Scholar 

  • Ikeda H, Shin-Ya K, Omura S (2014) Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J Ind Microbiol Biotechnol 41(2):233–250

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Omura S (1997) Avermectin biosynthesis. Chem Rev 97(7):2591–2610

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Nonomiya T, Omura S (2001) Organization of biosynthetic gene cluster for avermectin in Streptomyces avermitilis: analysis of enzymatic domains in four polyketide synthases. J Ind Microbiol Biotechnol 27(3):170–176

    Article  CAS  PubMed  Google Scholar 

  • Im JH, Kim MG, Kim ES (2007) Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J Microbiol Biotechnol 17(3):534–538

    CAS  PubMed  Google Scholar 

  • Jabbar A, Campbell AJ, Charles JA, Gasser RB (2013) First report of anthelmintic resistance in Haemonchus contortus in alpacas in Australia. Parasit Vectors 6(1):243

    Article  PubMed Central  PubMed  Google Scholar 

  • Jha AK, Lamichhane J, Sohng JK (2014) Enhancement of herboxidiene production in Streptomyces chromofuscus ATCC 49982. J Microbiol Biotechnol 24(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu Y, Wang P, Wen Y, Song Y, Chen Z, Li J (2011) Inactivation of the extracytoplasmic function sigma factor Sig6 stimulates avermectin production in Streptomyces avermitilis. Biotechnol Lett 33(10):1955–1961

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Hammell KL, Dohoo IR, Revie CW (2012) Effectiveness of emamectin benzoate for treatment of Lepeophtheirus salmonis on farmed Atlantic salmon Salmo salar in the Bay of Fundy, Canada. Dis Aquat Organ 102(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Jungmann V, Molnar I, Hammer PE, Hill DS, Zirkle R, Buckel TG, Buckel D, Ligon JM, Pachlatko JP (2005) Biocatalytic conversion of avermectin to 4"-oxo-avermectin: characterization of biocatalytically active bacterial strains and of cytochrome p450 monooxygenase enzymes and their genes. Appl Environ Microbiol 71(11):6968–6976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitani S, Ikeda H, Sakamoto T, Noguchi S, Nihira T (2009) Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotechnol 82(6):1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T (2011) Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci U S A A108(39):16410–16415

    Article  Google Scholar 

  • Lee JW, Kim TY, Jang YS, Choi S, Lee SY (2011) Systems metabolic engineering for chemicals and materials.Trends. Biogeosciences 29(8):370–378

    CAS  Google Scholar 

  • Li JS, Wang JD, Yang LY, Zhang J, Zhang H, Wang XJ, Xiang WS (2013) New doramectin analogs from mutant Streptomyces avermitilis NEAU1069-3. J Antibiot (Tokyo) 67(2):187–189

    Article  Google Scholar 

  • Li L, Guo J, Wen Y, Chen Z, Song Y, Li J (2010a) Overexpression of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains. J Ind Microbiol Biotechnol 37(7):673–679

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chen Z, Lin X, Zhang X, Song Y, Wen Y, Li J (2008) Engineering of avermectin biosynthetic genes to improve production of ivermectin in Streptomyces avermitilis. Bioorg Med Chem Lett 18(20):5359–5363

    Article  CAS  PubMed  Google Scholar 

  • Li M, Chen Z, Zhang X, Song Y, Wen Y, Li J (2010b) Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. Bioresour Technol 101(23):9228–9235

    Article  CAS  PubMed  Google Scholar 

  • Lim LE, Vilcheze C, Ng C, Jacobs WR Jr, Ramon-Garcia S, Thompson CJ (2013) Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob Agents Chemother 57(2):1040–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin X, Wen Y, Li M, Chen Z, Guo J, Song Y, Li J (2009) A new strain of Streptomyces avermitilis produces high yield of oligomycin A with potent anti-tumor activity on human cancer cell lines in vitro. Appl Microbiol Biotechnol 81(5):839–845

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yan T, Jiang L, Wen Y, Song Y, Chen Z, Li J (2013a) Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of coenzyme A metabolism in Streptomyces avermitilis. J Bacteriol 195(19):4365–4372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013b) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77(1):112–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Li M, Cao Y, Qu JP, Zhang ZW, Xu SW, Li S (2014) Effects of avermectin on immune function and oxidative stress in the pigeon spleen. Chem Biol Interact 5(210):43–50

  • Maharjan S, Oh TJ, Lee HC, Sohng JK (2008) Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnol Lett 30(9):1621–1626

    Article  CAS  PubMed  Google Scholar 

  • Maharjan S, Park JW, Yoon YJ, Lee HC, Sohng JK (2010) Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides. Biotechnol Lett 32(2):277–282

    Article  CAS  PubMed  Google Scholar 

  • Maharjan S, Oh TJ, Lee HC, Sohng JK (2009) Identification and functional characterization of an afsR homolog regulatory gene from Streptomyces venezuelae ATCC 15439. J Microbiol Biotechnol 19(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Malla S, Niraula NP, Liou K, Sohng JK (2010) Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius. Res Microbiol 161(2):109–117

    Article  CAS  PubMed  Google Scholar 

  • McCormick JR, Flardh K (2012) Signal and regulators that govern Streptomyces development. FEMS Microbiol Rev 36(1):206–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto KT, Kitani S, Komatsu M, Ikeda H, Nihira T (2011) The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis. Microbiology 157(Pt8):2266–2275

    Article  CAS  PubMed  Google Scholar 

  • Molnar I, Hill DS, Zirkle R, Hammer PE, Gross F, Buckel TG, Jungmann V, Pachlatko JP, Ligon JM (2005) Biocatalytic conversion of avermectin to 4'-oxo-avermectin: heterologous expression of the ema1 cytochrome P450 monooxygenase. Appl Environ Microbiol 71(11):6977–6985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molnar I, Jungmann V, Stege J, Trefzer A, Pachlatko JP (2006) Biocatalytic conversion of avermectin into 4''-oxo-avermectin: discovery, characterization, heterologous expression and specificity improvement of the cytochrome P450 enzyme. Biochem Soc Trans 34(Pt 6):1236–1240

    CAS  PubMed  Google Scholar 

  • Njue AI, Prichard RK (2004) Genetic variability of glutamate-gated chloride channel genes in ivermectin-susceptible and resistant strains of Cooperia oncophora. Parasitology 129(Pt 6):741–751

    Article  CAS  PubMed  Google Scholar 

  • Oh TJ, Niraula NP, Liou K, Sohng JK (2010) Identification of the duplicated genes for S-adenosyl-l-methionine synthetase (metK1-sp and metK2-sp) in Streptomyces peucetius var. caesius ATCC 27952. J Appl Microbiol 109(2):398–407

    CAS  PubMed  Google Scholar 

  • Omura S (2008) Ivermectin: 25 years and still going strong. Int J Antimicrob Agents 31(2):91–98

    Article  CAS  PubMed  Google Scholar 

  • Parajuli N, Viet HT, Ishida K, Tong HT, Lee HC, Liou K, Sohng JK (2005) Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res Microbiol 156(5–6):707–712

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Roe JH (2008) Mycothiol regulates and is regulated by a thiol-specific anti-sigma factor RsrA and sigma(R) in Streptomyces coelicolor. Mol Microbiol 68(4):861–870

  • Paudel S, Lee HC, Kim BS, Sohng JK (2011) Enhancement of pradimicin production in Actinomadura hibisca P157-2 by metabolic engineering. Microbiol Res 167(1):32–39

    Article  PubMed  Google Scholar 

  • Pitterna T, Cassayre J, Huter OF, Jung PM, Maienfisch P, Kessabi FM, Quaranta L, Tobler H (2009) New venturer in the chemistry of avermectins. Bioorg Med Chem 17(12):4085–4095

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L, Bai L, Deng Z (2011) Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 92(2):337–345

    Article  CAS  PubMed  Google Scholar 

  • Rajkarnikar A, Kwon HJ, Ryu YW, Suh JW (2007) Two threonine residues required for role of AfsKav in controlling morphogenesis and avermectin production in Streptomyces avermitilis. J Microbiol Biotechnol 17(9):1563–1567

    CAS  PubMed  Google Scholar 

  • Rajkarnikar A, Kwon HJ, Ryu YW, Suh JW (2006) Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr Microbiol 53(3):204–208

    Article  CAS  PubMed  Google Scholar 

  • Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kuhl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM (2008) The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res 36(18):5787–5799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarre C, Claerebout E, Vercruysse J, Levecke B, Geldhof P, Pardon B, Alvinerie M, Sutra JF, Geurden T (2012) Doramectin resistance in Haemonchus contortus on an alpaca in Belgium. Vet Parasitol 185(2–4):346–351

    Article  CAS  PubMed  Google Scholar 

  • Scalcinati G, Otero JM, Van Vleet JR, Jeffries TW, Olsson L, Nielsen J (2012) Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 12(5):582–597

    Article  CAS  PubMed  Google Scholar 

  • Siddique S, Syed Q, Adnan A, Nadeem M, Irfan M, Qureshi FA (2013) Production of avermectin B1b from Streptomyces avermitilis 41445 by batch submerged fermentation. Jundishapur J Microbiol 6(8):e7198

    Article  Google Scholar 

  • Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher (2009) The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol 74(3):557–581

  • Stutzman-Engwall K, Conlon S, Fedechko R, Kaczmarek F, McArthur H, Krebber A, Chen Y, Minshull J, Raillard SA, Gustafsson C (2003) Engineering the aveC gene to enhance the ratio of doramectin to its CHC-B2 analogue produced in Streptomyces avermitilis. Biotechnol Biogeosciences 82(3):359–369

    CAS  Google Scholar 

  • Stutzman-Engwall K, Conlon S, Fedechko R, McArthur H, Pekrun K, Chen Y, Jenne S, La C, Trinh N, Kim S, Zhang YX, Fox R, Gustafsson C, Krebber A (2005) Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metab Eng 7(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Zhao Q, Yu F, Zhang H, Wu Z, Wang Y, Wang Y, Zhang Q, Liu W (2013) Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J Am Chem Soc 135(4):1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Tandon R, LePage KT, Kaplan RM (2006) Cloning and characterization of genes encoding alpha and beta subunits of glutamate-gated chloride channel protein in Cylicocyclus nassatus. Mol Biochem Parasitol 150(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Trefzer A, Jungmann V, Molnár I, Botejue A, Buckel D, Frey G, Hill DS, Jorg M, Ligon JM, Mason D, Moore D, Pachlatko JP, Richardson TH, Spangenberg P, Wall MA, Zirkle R, Stege JT (2007) Biocatalytic conversion of avermectin to 4''-oxo-avermectin: improvement of cytochrome p450 monooxygenase specificity by directed evolution. Appl Environ Microbiol 73(13):4317–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333

    Article  PubMed  Google Scholar 

  • Wang JB, Pan HX, Tang GL (2011) Production of doramectin by rational engineering of avermectin biosynthesis pathway. Bioorg Med Chem Lett 21(11):3320–3323

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Zhang F, Pu JY, Zhao J, Zhao QF, Tang GL (2013) Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain. Biotechnol Lett 36(4):813–819

    Article  PubMed  Google Scholar 

  • Wohlert S, Lomovskaya N, Kulowski K, Fonstein L, Occi JL, Gewain KM, MacNeil DJ, Hutchinson CR (2001) Insights about the biosynthesis of the avermectin deoxysugar L-oleandrose through heterologous expression of Streptomyces avermitilis deoxysugar genes in Streptomyces lividans. Chem Biol 8(7):681–700

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme AJ, Rogers AT (2005) Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmitics. Parasitology 131(Suppl):S85–S95

    CAS  PubMed  Google Scholar 

  • Wolstenholme AJ (2012) Glutamate-gate chloride channels. J Biol Chem 287(48):40232–40238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin P, Li YY, Zhou J, Wang YH, Zhang SL, Ye BC, Ge WF, Xia YL (2013) Direct proteomic mapping of Streptomyces avermitilis wild and industrial strain and insights into avermectin production. J proteomics 79:1–12

    Article  CAS  PubMed  Google Scholar 

  • Yin P, Wang YH, Zhang SL, Chu J, Zhuang YP, Chen N, Li XF, Wu YB (2008) Effect of mycelial morphology on bioreactor performance and avermectin production of Streptomyces avermitilis in submerged cultivations. J Chin Inst Chem Eng 39(6):609–615

    Article  CAS  Google Scholar 

  • Yong JH, Byeon WH (2005) Alternative production of avermectin components in Streptomyces avermitilis by gene replacement. J Microbiol 43(3):277–284

    CAS  PubMed  Google Scholar 

  • Yoon YJ, Kim ES, Hwang YS, Choi CY (2004) Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl Microbiol Biotechnol 63(6):626–634

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Bai LQ, Zhou XF, Deng ZX (2012) Inactivation of the positive LuxR-type oligomycin biosynthesis regulators OlmRI and OlmRII increases avermectin production in Streptomycesavermitilis. Chin Sci Bull 57(8):869–876

    Article  CAS  Google Scholar 

  • Zhang C, Albermann C, Fu X, Thorson JS (2006a) The in vitro characterization of the iterative avermectin glycosyltransferase AveBI reveals reaction reversibility and sugar nucleotide flexibility. J Am Chem Soc 128(51):16420–16421

  • Zhang J, Wang X, Diao J, He H, Zhang Y, Xiang W (2013) Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. J Ind Microbiol Biotechnol 40(8):877–889

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen Z, Li M, Wen Y, Song Y, Li J (2006b) Construction of ivermectin producer by domain swaps of avermectin polyketide synthase in Streptomyces avermitilis. Appl Microbiol Biotechnol 72(5):986–994

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang Q, Guo W, Cai Y, Wang C, Wang S, Xiang S, Song Y (2013) Overexpression of metK shows different effects on avermectin production in various Streptomyces avermitilis strains. World J Microbiol Biotechnol 29(10):1869–1875

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang Y, Wang S, Chen Z, Wen Y, Song Y (2009) Construction of a doramectin producer mutant from an avermectin-overproducing industrial strain of Streptomyces avermitilis. Can J Microbiol 55(12):1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Zhinan X, Peilin C (1999) Enhanced production of avermectin B1a by medium optimization and glucose feeding with Streptomyces avermilitis. Bioprocess Biosyst Eng 20(1):67–71

    CAS  Google Scholar 

  • Zhu WJ, Li M, Liu C, Qu JP, Min YH, Xu SW, Li S (2013) Avermectin induced liver injury in pigeon: mechanisms of apoptosis and oxidative stress. Ecotoxicol Environ Saf 98:74–81

    Article  CAS  PubMed  Google Scholar 

  • Zhuo Y, Zhang W, Chen D, Gao H, Tao J, Liu M, Gou Z, Zhou X, Ye BC, Zhang Q, Zhang S, Zhang LX (2010) Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Natl Acad Sci U S A 107(25):11250–11254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuo Y, Zhang T, Wang Q, Cruz-Morales P, Zhang B, Liu M, Barona-Gómez F, Zhang L (2014) Synthetic biology of avermectin for production improvement and structure diversification. Biogeosciences J9(3):316–325

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Education, Science and Technology (2011-0031960) and by the grant from the Next-Generation BioGreen 21 Program (JKS: PJ0094832), Rural Development Administration, and Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nguyen Huy Thuan or Jae Kyung Sohng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuan, N.H., Pandey, R.P. & Sohng, J.K. Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl Microbiol Biotechnol 98, 7747–7759 (2014). https://doi.org/10.1007/s00253-014-5926-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5926-x

Keywords

Navigation