Skip to main content
Log in

Catalytic Domain of AfsKav Modulates Both Secondary Metabolism and Morphologic Differentiation in Streptomyces avermitilis ATCC 31272

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Genetic characterization of afsK-av (SAV3816) in Streptomyces avermitilis ATCC 31272 was performed to evaluate the role(s) of this eukaryotic-type serine–threonine protein kinase (STPK) in the regulation of morphologic differentiation and secondary metabolism. The afsK-av::neo mutant (SJW4001) was defective in sporulation, melanogenesis, and avermectin production. These phenotypic defects were complemented by introduction of either the intact afsK-av or the 900-nt catalytic domain region. The catalytic domain restored sporulation and melanogenesis to SJW4001 whereas it partially recovered avermectin production. This study reveals that AfsKav is a pleiotropic regulator and demonstrates in vivo that the C-region of AfsKav is not essential for its regulatory role in S. avermitilis differentiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Literature Cited

  1. Bentley SD, Charter KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  2. Bibb MJ, (1996) The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142:1335–1344

    Article  PubMed  CAS  Google Scholar 

  3. Chater KF, (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713

    Article  PubMed  CAS  Google Scholar 

  4. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. (1998) Deciphering the biology of Mycobarterium tuberculosis from the complete genomic sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  5. Davis HG, Green RH (1986) Avermectins and milbemycins. Nat Prod Rep 3:87–121

    Article  Google Scholar 

  6. Denis F, Brezinnski R (1991) An improved aminoglycoside resistance gene cassette for use in gram-negative bacteria and Streptomyces. FEMS Microbiol Lett 81:261–264

    Article  CAS  Google Scholar 

  7. Durán R, Villarino A, Bellinzoni M, Wehenkel A, Fernandez P, Boitel B, et al. (2005) Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem Biophys Res Commun 333:858–867

    Article  PubMed  CAS  Google Scholar 

  8. Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  PubMed  CAS  Google Scholar 

  9. Hwang YS, Kim Es, Biro S, Choi CY (2003) Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl Environ Microbiol 69:1263–1269

    Article  PubMed  CAS  Google Scholar 

  10. Kenelly PJ (2002) Protein kinases and protein phosphatases in prokarytes: A genome perspective. FEMS Micorbiol Lett 206:1–8

    Article  Google Scholar 

  11. Kieser T, Bibb MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. Norwich Research Park, UK: John Innes Centre

    Google Scholar 

  12. Mandec E, Stensballe A, Kjellström S, Cladière L, Obuchowski M, Jensen ON, et al. (2003) Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis. J Mol Biol 330:459–472

    Article  CAS  Google Scholar 

  13. Matsumoto A, Hong SK, Ishizuka H, Horinouchi S, Beppu T (1994) Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146:47–57

    Article  PubMed  CAS  Google Scholar 

  14. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Takahashi M, et al. (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: Deciphering the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220

    Article  PubMed  CAS  Google Scholar 

  15. Petrickova K, Petricek M (2003) Eukaryotic-type protein kinases in Streptomyces coelicolor: Variation on a common theme. Microbiology 149:1609–1621

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. New York, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  17. Sawai R, Suzuki A, Takano Y, Lee PC, Horinouchi S (2004) Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). Gene 334:53–61

    Article  PubMed  CAS  Google Scholar 

  18. Ueda K, Umeyama T, Beppu T, Horinouchi S (1996) The aerial mycelium-defective phenotype of Streptomyces griseus resulting from A-factor deficiency is suppressed by a Ser/Thr kinase of S. coelicolor A3(2). Gene 169:91–95

    Article  PubMed  CAS  Google Scholar 

  19. Umeyama T, Lee PC, Ueda K, Hourinochi S (1999) An Afsk/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145:2281–2292

    PubMed  CAS  Google Scholar 

  20. Umeyama T, Lee PC, Hourinochi S (2002) Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl Microbiol Biotechnol 59:419–425

    Article  PubMed  CAS  Google Scholar 

  21. Umeyama T, Hourinochi S (2001) Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J Bacteriol 183:5506–5512

    Article  PubMed  CAS  Google Scholar 

  22. Wohlert SE, Lomovskaya N, Kulowski K, Fonstein L, Occi JL, Gewain KM, et al. (2001) Insights about the biosynthesis of the avermectin deoxysugar L-oleandrose through heterologous expression of Streptomyces avermitilis deoxysugar genes in Streptomyces lividans. Chem Biol 8:681–700

    Article  PubMed  CAS  Google Scholar 

  23. Yong JH, Byeon WH (2005) Alternative production of avermectin components in Streptomyces avermitilis by gene replacement. J Microbiol 43:277–284

    PubMed  CAS  Google Scholar 

  24. Zhang CC (1996) Bacterial signaling involving eukaryotic-type protein kinases. Mol Microbiol 20:9–15

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Korea Science and Engineering Foundation (KOSEF-R01-2003-000-10283-0) and by support from the Ministry of Education’s Brain Korea 21 project. The investigators also appreciate the support from the 21C Frontier Microbial Genomics and Application Center Program, Ministry of Science and Technology (Grant No. MG 05-0303-1-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-W. Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajkarnikar, A., Kwon, HJ., Ryu, YW. et al. Catalytic Domain of AfsKav Modulates Both Secondary Metabolism and Morphologic Differentiation in Streptomyces avermitilis ATCC 31272. Curr Microbiol 53, 204–208 (2006). https://doi.org/10.1007/s00284-006-0062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0062-1

Keywords

Navigation