Skip to main content
Log in

Properties and applications of microbial transglutaminase

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Some properties and applications of the transglutaminase (TGase) referred to as microbial TGase (MTGase), derived from a variant of Streptomyces mobaraensis (formerly classified as Streptoverticillium mobaraense), are described. MTGase cross-linked most food proteins, such as caseins, soybean globulins, gluten, actin, myosins, and egg proteins, as efficiently as mammalian TGases by forming an ε-(γ-glutamyl)lysine bond. However, unlike many other TGases, MTGase is calcium-independent and has a relatively low molecular weight. Both of these properties are of advantage in industrial applications; a number of studies have illustrated the potential of MTGase in food processing and other areas. The crystal structure of MTGase has been solved. It provides basic structural information on the MTGase and accounts well for its characteristics. Moreover, an efficient method for producing extracellular MTGase has been established using Corynebacterium glutamicum. MTGase may be expected to find many uses in both food and non-food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a, b
Fig. 4a, b

Similar content being viewed by others

References

  • Aeschlimann D, Paulsson M (1994) Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost 71:402–415

    CAS  PubMed  Google Scholar 

  • Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganism. Agric Biol Chem 53:2613–2617

    CAS  Google Scholar 

  • Bishop PD, Teller DC, Smith RA, Lasser GW, Gilbert T, Seale RL (1990) Expression, purification, and characterization of human factor XIII in Saccharomyces cerevisiae. Biochemistry 29:1861–1869

    CAS  PubMed  Google Scholar 

  • Chung SI, Lewis MS, Folk JE (1974) Relationships of the catalytic properties of human plasma and platelet transglutaminases (activated blood coagulation factor XIII) to their subunit structures. J Biol Chem 249:940–950

    CAS  PubMed  Google Scholar 

  • Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2003) Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol 69:3011–3014

    Article  CAS  PubMed  Google Scholar 

  • Enzyme Nomenclature (1992) Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (eds) Academic Press, San Diego, Calif.

  • Fink ML, Chung SI, Folk JE (1980) γ-Glutamine cyclotransferase: specificity toward ε-(γ-glutamyl)-l-lysine and related compounds. Proc Natl Acad Sci USA 77:4564–4568

    CAS  PubMed  Google Scholar 

  • Finot PA, Mottu F, Bujard E, Mauron J (1978) In: Friedman M (ed) Nutritional improvement of food and foods proteins. Plenum Press, London, pp 549–570

  • Friedman M, Finot PA (1990) Nutritional improvement of bread with lysine and γ-glutamyllysine. J Agric Food Chem 38:2011–2020

    Google Scholar 

  • Hornyak TJ, Bishop PD, Shafer JA (1989) α-Thrombin-catalyzed activation of human platelet factor XIII: relationship between proteolysis and factor XIIIa activity. Biochemistry 28:7326–7332

    CAS  PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Ikura K, Sasaki R, Motoki M (1992) Use of transglutaminase in quality-improvement and processing of food proteins. Comments Agric Food Chem 2:389–407

    CAS  Google Scholar 

  • Ikura K, Nasu T, Yokota H, Tsuchiya Y, Sasaki R, Chiba H (1998) Amino acid sequence of guinea pig liver transglutaminase. Biochemistry 27:2898–2905

    Google Scholar 

  • Iwami K, Yasumoto K (1986) Amine-binding capacities of food proteins in transglutaminase reaction and digestibility of wheat gliadin with ε-attached lysine. J Sci Food Agric 37:495–503

    CAS  Google Scholar 

  • Kanaji T, Ozaki H, Takao T, Kawajiri H, Ide H, Motoki M, Shimonishi Y (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J Biol Chem 268:11565–11572

    CAS  PubMed  Google Scholar 

  • Kang IJ, Matsumura Y, Ikura K, Motoki M, Sakamoto H, Mori T (1994) Gelation and properties of soybean glycinin in a transglutaminase-catalyzed system. J Agric Food Chem 42:159–165

    Google Scholar 

  • Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matui H, Suzuki E (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277 46:44252–44260

    Article  Google Scholar 

  • Kato A, Wada T, Kobayashi K, Seguro K, Motoki M (1991) Ovomucin-food protein conjugates prepared through the transglutaminase reaction. Agric Biol Chem 55:1027–1031

    CAS  Google Scholar 

  • Kikuchi Y, Date M, Umezawa Y, Yokoyama K, Heima H, Matsui H (2002) Method for the secretion and production protein. International Patent Cooperation Treaty patent WO02/081694

  • Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H (2003) Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-domain by a co-secreted subtilisin-like protease from Streptomyces albogriseolus. Appl Environ Microbiol 69:358–366

    Article  CAS  PubMed  Google Scholar 

  • Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 12:75–94

    Article  Google Scholar 

  • Kumazawa Y, Sakamoto H, Kawajiri H, Seguro K, Motoki M (1996a) Determination of ε-(γ-glutamyl)lysine in several fish eggs and muscle proteins. Fish Sci 62:331–332

    CAS  Google Scholar 

  • Kumazawa Y, Nakanishi K, Yasueda H, Motoki M (1996b) Purification and characterization of transglutaminase from walleye pollack liver. Fish Sci 62:959–964

    CAS  Google Scholar 

  • Kuraishi C, Sakamoto J, Soeda T (1996) The usefulness of transglutaminase for food processing. biotechnology for improved foods and flavors. In: Takeoka GR, Teranishi R, Williams PJ, Kobayashi A (eds) Biotechnology for improved foods and flavors. ACS symposium series 637 pp 29–38

  • Kurth L, Rogers PJ (1984) Transglutaminase catalyzed crosslinking of myosin to soya protein, casein, and gluten. J Food Sci 49:573–576

    Google Scholar 

  • Liebl W (1991) The genus Corynebacterium—nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York Berlin Heidelberg, pp 1157–1171

  • Malumbres M, Gil JA, Martin JF (1993) Codon preference in Corynebacteria. Gene 134:15–24

    Article  CAS  PubMed  Google Scholar 

  • Meister A, Tate SS, Griffith OW (1981) γ-Glutamyl transpeptidase. Methods Enzymol 77:237–253

    CAS  PubMed  Google Scholar 

  • Motoki M, Nio N (1983) Crosslinking between different food proteins by transglutaminase. J Food Sci 48:561–566

    Google Scholar 

  • Motoki M, Nio N, Takinami K (1984) Functional properties of food proteins polymerized by transglutaminase. Agric Biol Chem 48:1257–1261

    CAS  Google Scholar 

  • Motoki M, Seguro K, Nio N, Takinami K (1986) Glutamine-specific deamidation of transglutaminase. Agric Biol Chem 50:3025–3030

    CAS  Google Scholar 

  • Motoki M, Aso H, Seguro K, Nio N (1987a) αS1-Casein film prepared using transglutaminase. Agric Biol Chem 51:993–996

    CAS  Google Scholar 

  • Motoki M, Nio N, Takinami K (1987b) Functional properties of heterologous polymer prepared by transglutaminase. Agric Biol Chem 51:237–238

    CAS  Google Scholar 

  • Neilsen PM (1995) Reactions and potential industrial applications of transglutaminase. Review of literature and patents. Food Biotechol 9:119–156

    Google Scholar 

  • Nio N, Motoki M (1986) Gelation of protein emulsion by transglutaminase. Agric Biol Chem 50:1409–1412

    CAS  Google Scholar 

  • Nio N, Motoki M, Takinami K (1985) Gelation of casein and soybean globulins by transglutaminase. Agric Biol Chem 49:851–855

    Google Scholar 

  • Nio N, Motoki M, Takinami K (1986) Gelation mechanism of protein solutions by transglutaminase. Agric Biol Chem 48:851–855

    Google Scholar 

  • Noguchi K, Ishikawa K, Yokoyama K, Ohtsuka T, Nio N, Suzuki E (2001) Crystal structure of red sea bream transglutaminase. J Biol Chem 276 15:12055–12059

    Article  Google Scholar 

  • Nonaka M, Tanaka H, Okiyama A, Motoki M, Ando H, Umeda K, Matsuura A (1989) Polymerization of several proteins by Ca2+-independent transglutaminase derived from microorganisms. Agric Biol Chem 53:2619–2623

    CAS  Google Scholar 

  • Nonaka M, Sakamoto H, Toiguchi S, Kawajiri H, Soeda T, Motoki M (1992) Sodium caseinate and skim milk gels formed by incubation with microbial transglutaminase. J Food Sci 57:1214–1218

    Google Scholar 

  • Nonaka M, Matsuura Y, Nakano K, Motoki M (1997) Improvement of the pH-solubility profile of sodium caseinate by using Ca2+-independent microbial transglutaminase with gelatin. Food Hydrocolloids 11:347–349

    Google Scholar 

  • Pasternack R, Dorsch S, Otterbach JT, Robenek IR, Wolf S, Fuchsbauer HL (1998) Bacterial pro-transglutaminase from Streptoverticillium mobaraense: purification, characterization and sequence of zymogen. Eur J Biochem 257:570–576

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Kumazawa Y, Kawajiri H, Motoki M (1995) ε-(γ-Glutamyl)lysine crosslink distribution in foods as determined by improved method. J Food Sci 60:416–419

    Google Scholar 

  • Sakamoto H, Yamazaki K, Kaga C, Yamamoto Y, Ito R, Kurosawa Y (1996) Strength enhancement by addition of microbial transglutaminase during Chinese noodle processing. Nippon Shokuhin Kagaku Kaishi 43:598–602

    CAS  Google Scholar 

  • Seguro K, Kumazawa Y, Kuraishi C, Sakamoto H, Motoki M (1994) Trends Jpn Soy Protein Res Inform 5:308–313

    Google Scholar 

  • Seguro K, Kumazawa Y, Ohtsuka T, Toiguchi S, Motoki M (1995a) Microbial transglutaminase and ε-(γ-glutamyl)lysine crosslink effects on elastic properties of kamaboko gel. J Food Sci 60:305–311

    CAS  Google Scholar 

  • Seguro K, Kumazawa Y, Ohtsuka T, Ide H, Nio N, Motoki M, Kubota K (1995b) ε-(γ-Glutamyl)lysine: hydrolysis by γ-glutamyl transferase of different origins, when free or protein bound. J Agric Food Chem 43:1977–1981

    Google Scholar 

  • Seki N, Uno H, Lee NH, Kimura I, Toyoda K, Fujita T, Arai K (1990) Transglutaminase activity in Alaska pollack muscle and surimi, and its reaction with myosin b. Nippon Suisan Gakkaishi 56:125–132

    CAS  Google Scholar 

  • Shimba N, Yokoyama K, Suzuki E (2002) NMR-based screening method for transglutaminase: rapid analysis of their substrate specificities and reaction rates. J Agric Food Chem 50:1330–1334

    Google Scholar 

  • Suzuki M, Taguchi S, Yamada S, Kojima S, Miura K, Momose H (1997) A novel member of the subtilisin-like protease family from Streptomyces albogriseolus. J Bacteriol 179:430–438

    CAS  PubMed  Google Scholar 

  • Takehana S, Washizu K, Ando K, Koikeda S, Takeuchi K, Matsui H, Motoki M, Takagi H (1994) Chemical synthesis of the gene for microbial transglutaminase from Streptoverticillium and its expression in Escherichia coli. Biosci Biotechnol Biochem 58:88–92

    CAS  PubMed  Google Scholar 

  • Washizu K, Ando K, Koikeda S, Hirose S, Matsuura A, Akagi H, Motoki M, Takeuchi K (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotechnol Biochem 58:82–87

    CAS  PubMed  Google Scholar 

  • Whitaker JR (1977) In: Feeney RE, Whitaker JR (eds) Food proteins-improvement through chemical and enzymatic modification. American Chemical Society, Washington, D.C., pp 95–105

  • Wilson SA (1992) Modifying meat proteins via enzymatic crosslinking, proceedings of the 27th meat industry research conference, Hamilton, Meal Industry Research Institutes of New Zealand, Mirinz, pp 247–277

  • Yasueda H, Nakanishi K, Kumazawa Y, Nagase K, Motoki M, Matsui H (1995) Tissue-type transglutaminase from red sea bream (Pagrus major) sequence analysis of the cDNA and functional expression in Escherichia coli. Eur J Biol 232:411–419

    CAS  Google Scholar 

  • Yee VC, Pedersen LC, Trong IL, Bishop PD, Stenkamp RE, Teller DC (1994) Tree-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci USA 91:7296–7300

    CAS  PubMed  Google Scholar 

  • Yokoyama K, Nakamura N, Saguaro K, Kubota K (2000) Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci Biotechnol Biochem 64:1263–1270

    CAS  PubMed  Google Scholar 

  • Zhu Y, Rinzema A, Tramper J, Bol J (1995) Microbial transglutaminase—a review of its production and application in food processing. Appl Microbiol Biotechnol 44:277–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, K., Nio, N. & Kikuchi, Y. Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64, 447–454 (2004). https://doi.org/10.1007/s00253-003-1539-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1539-5

Keywords

Navigation