Skip to main content
Log in

A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We herein adapted a markerless gene replacement method by combining a temperature-sensitive plasmid pKSV7 with a counterselectable marker, the upp gene encoding uracil phosphoribosyltransferase (UPRTase), for the poly-γ-glutamic acid (γ-PGA)-producing strain Bacillus amyloliquefaciens LL3. Deletion of the upp gene conferred LL3 5-fluorouracil (5-FU) resistance. Sensitivity to 5-FU was restored when LL3 Δupp was transformed with pKSV7-based deletion plasmid which carries a functional allele of the upp gene of Bacillus subtilis 168. These observations allowed us to adapt a two-step plasmid integration and excision strategy to perform markerless deletion of genes of interest. Deletion plasmid harboring a mutant allele of the target gene was first integrated in the genome by culturing cells under nonpermissive conditions for pKSV7 replication. Single-crossover recombinants were then grown without antibiotics to aid the second recombinational event. 5-FU was used to select for double-crossover recombinants with plasmid evicted from the chromosome. The resulting recombinants either harbored the wild-type or mutated allele of the target gene and could be identified by PCR and DNA sequencing. Using this method, we successively removed the amyA gene and a 47-kb fragment of the bae cluster from the genome of LL3, with higher efficiency compared with previous reports. We also investigated the effects of a transcriptional regulator, RocR, on γ-PGA production and cell growth. Specific γ-PGA production of the rocR mutant was increased by 1.9-fold, which represents a new way to improve γ-PGA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bajaj I, Lele S, Singhal R (2009) A statistical approach to optimization of fermentative production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour Technol 100:826–32

    Article  PubMed  CAS  Google Scholar 

  • Biswas I, Gruss A, Ehrlich SD, Maguin E (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175:3628–35

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao M, Song C, Jin Y, Liu L, Liu J, Xie H, Guo W, Wang S (2010) Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes. J Mol Catal B Enzym 67:111–6

    Article  CAS  Google Scholar 

  • Cao M, Geng W, Liu L, Song C, Xie H, Guo W, Jin Y, Wang S (2011) Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol 102:4251–7

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25–36

    Article  PubMed  CAS  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour Technol 99:4597–602

    Article  PubMed  CAS  Google Scholar 

  • Geng W, Cao M, Song C, Xie H, Liu L, Yang C, Feng J, Zhang W, Jin Y, Du Y, Wang S (2011) Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. J Bacteriol 193:3393–4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goh YJ, Azcárate-Peril MA, O’Flaherty S, Durmaz E, Valence F, Jardin J, Lortal S, Klaenhammer TR (2009) Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 75:3093–105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gunka K, Commichau FM (2012) Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 85:213–24

    Article  PubMed  CAS  Google Scholar 

  • Keller KL, Bender KS, Wall JD (2009) Development of a markerless genetic exchange system for Desulfovibrio vulgaris Hildenborough and its use in generating a strain with increased transformation efficiency. Appl Environ Microbiol 75:7682–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kristich CJ, Manias DA, Dunny GM (2005) Development of a method for markerless genetic exchange in Enterococcus faecalis and its use in construction of a srtA mutant. Appl Environ Microbiol 71:5837–49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Ma X, Wang Y, Liu F, Qiao J, Li XZ, Gao X, Zhou T (2011) Depressed biofilm production in Bacillus amyloliquefaciens C06 causes γ-poly-glutamic acid (γ-PGA) overproduction. Curr Microbiol 62:235–41

    Article  PubMed  CAS  Google Scholar 

  • Manabe K, Kageyama Y, Morimoto T, Ozawa T, Sawada K, Endo K, Tohata M, Ara K, Ozaki K, Ogasawara N (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 77:8370–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manabe K, Kageyama Y, Morimoto T, Shimizu E, Takahashi H, Kanaya S, Ara K, Ozaki K, Ogasawara N (2013) Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb Cell Fact 12:18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15:73–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 85:155–63

    Article  PubMed  CAS  Google Scholar 

  • Rachinger M, Bauch M, Strittmatter A, Bongaerts J, Evers S, Maurer KH, Daniel R, Liebl W, Liesegang H, Ehrenreich A (2013) Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis. J Biotechnol 167:365–9

    Article  PubMed  CAS  Google Scholar 

  • Rairakhwada D, Seo JW, Seo M, Kwon O, Rhee SK, Kim CH (2010) Gene cloning, characterization, and heterologous expression of levansucrase from Bacillus amyloliquefaciens. J Ind Microbiol Biotechnol 37:195–204

    Article  PubMed  CAS  Google Scholar 

  • Redder P, Linder P (2012) New range of vectors with a stringent 5-fluoroorotic acid-based counterselection system for generating mutants by allelic replacement in Staphylococcus aureus. Appl Environ Microbiol 78:3846–54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sauer U, Cameron DC, Bailey JE (1998) Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol Bioeng 59:227–38

    Article  PubMed  CAS  Google Scholar 

  • Scoffone V, Dondi D, Biino G, Borghese G, Pasini D, Galizzi A, Calvio C (2013) Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis. Biotechnol Bioeng 110:2006–12

    Article  PubMed  CAS  Google Scholar 

  • Shi F, Xu Z, Cen P (2006) Efficient production of poly-gamma-glutamic acid by Bacillus subtilis ZJU-7. Appl Biochem Biotechnol 133:271–82

    Article  PubMed  CAS  Google Scholar 

  • Shih IL, Van YT (2001) The production of poly (γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–25

    Article  PubMed  CAS  Google Scholar 

  • Smith K, Youngman P (1992) Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74:705–11

    Article  PubMed  CAS  Google Scholar 

  • Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M (2005) Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem Rec 5:352–66

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Xu H, Shi N, Yao J, Li S, Ouyang P (2008) Improvement of poly (gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl Microbiol Biotechnol 79:527–35

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol 79:808–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xue GP, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34:183–91

    Article  CAS  Google Scholar 

  • Zakataeva NP, Nikitina OV, Gronskiy SV, Romanenkov DV, Livshits VA (2010) A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Appl Microbiol Biotechnol 85:1201–9

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–8

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Bao P, Zhang Y, Deng A, Chen N, Wen T (2011) Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal Biochem 409:130–7

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Xie H, He Y, Feng J, Gao W, Gu Y, Wang S, Song C (2013) Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiol Lett 343:127–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (“973”-Program) 2012CB725204; the National High Technology Research and Development Program of China (“863”-Program) 2012AA021505; the Natural Science Foundation of China Grant Nos. 31170030, 31300032, and 51073081; and the Project of Tianjin, China (13JCZDJC27800, 13JCYBJC24900, and 13JCQNJC09700). This work was also supported by the Ph.D. Candidate Research Innovation Fund of Nankai University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunjiang Song or Shufang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Gao, W., Feng, J. et al. A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Appl Microbiol Biotechnol 98, 8963–8973 (2014). https://doi.org/10.1007/s00253-014-5824-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5824-2

Keywords

Navigation