Skip to main content

Advertisement

Log in

A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A simple method to introduce marker-free deletions, insertions, and point mutations into the chromosomes of naturally nontransformable Bacillus amyloliquefaciens strains has been developed. The method is efficient and fast, and it allows for the generation of genetic modifications without the use of a counter-selectable marker or a special prerequisite strain. This method uses the combination of the following: the effective introduction of a delivery plasmid into cells for gene replacement; a two-step replacement recombination procedure, which occurs at a very high frequency due to the use of a thermosensitive rolling-circle replication plasmid; and colony polymerase chain reaction (PCR) analysis for screening. Using PCR primers with mismatches at the 3′ end enables the selection of strains that contain a single nucleotide substitution in the target gene. This approach can be used as a routine method for the investigation of complex physiological pathways and for the metabolic engineering of food-grade industrial B. amyloliquefaciens and other Bacillus strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    CAS  Google Scholar 

  • Arnaud M, Chastanet A, Débarbouillé M (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70:6887–6891

    Article  CAS  Google Scholar 

  • Bhowmik T, Fernández L, Steele JL (1993) Gene replacement in Lactobacillus helveticus. J Bacteriol 175:6341–6344

    CAS  Google Scholar 

  • Biswas I, Gruss A, Ehrlich SD, Maguin E (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175:3628–3635

    CAS  Google Scholar 

  • Bloor AE, Cranenburgh RM (2006) An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol 72:2520–2525

    Article  CAS  Google Scholar 

  • Brans A, Filée P, Chevigné A, Claessens A, Joris B (2004) New integrative method to generate Bacillus subtilis recombinant strains free of selection markers. Appl Environ Microbiol 70:7241–7250

    Article  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth promoting Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  Google Scholar 

  • Coukoulis H, Campbell LL (1971) Transformation in Bacillus amyloliquefaciens. J Bacteriol 105:319–322

    CAS  Google Scholar 

  • Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25–36

    Article  CAS  Google Scholar 

  • Huang MM, Arnheim N, Goodman MF (1992) Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res 20:4567–4573

    Article  CAS  Google Scholar 

  • Janes BK, Stibitz S (2006) Routine markerless gene replacement in Bacillus anthracis. Infect Immun 74:1949–1953

    Article  CAS  Google Scholar 

  • Jomantas JAV, Fiodorova JA, Abalakina EG, Kozlov YI (1991) Genetics of Bacillus amyloliquefaciens. 6th International Conference on Bacilli, Stanford, Calif., abstr. no T7

  • Liu S, Endo K, Ara K, Ozaki K, Ogasawara N (2008) Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter. Microbiology 154:2562–2570

    Article  CAS  Google Scholar 

  • Maguin E, Prevost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935

    CAS  Google Scholar 

  • Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35

    Article  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Noirot P, Petit MA, Ehrlich SD (1987) Plasmid replication stimulates DNA recombination in Bacillus subtilis. J Mol Biol 196:39–48

    Article  CAS  Google Scholar 

  • Nygaard P, Saxild HH (2005) The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size. J Bacteriol 187:791–794

    Article  CAS  Google Scholar 

  • Ramaley RF, Vasantha N (1983) Glycerol protection and purification of Bacillus subtilis glucose dehydrogenase. J Biol Chem 258:12558–12565

    CAS  Google Scholar 

  • Razer PN, Moran CP Jr (1988) Compartment-specific transcription in Bacillus subtilis: identification of the promoter for gdh. J Bacteriol 170:5086–5092

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shatalin KY, Neyfakh AA (2005) Efficient gene inactivation in Bacillus anthracis. FEMS Microbiol Lett 15:315–319

    Article  Google Scholar 

  • Sommer SS, Cassady JD, Sobell JL, Bottema CD (1989) A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin Proc 64:1361–1372

    CAS  Google Scholar 

  • Vehmaanperä J (1988) Transformation of Bacillus amyloliquefaciens protoplasts with plasmid DNA. FEMS Microbiol Lett 49:101–105

    Article  Google Scholar 

  • Vehmaanperä J (1989) Transformation of Bacillus amyloliquefaciens by electroporation. FEMS Microbiol Lett 52:165–169

    Article  Google Scholar 

  • Vehmaanperä J, Steinborn G, Hofemeister J (1991) Genetic manipulation of Bacillus amyloliquefaciens. J Biotechnol 19:221–240

    Article  Google Scholar 

  • Waschkau B, Waldeck J, Wieland S, Eichstädt R, Meinhardt F (2008) Generation of readily transformable Bacillus licheniformis mutants. Appl Microbiol Biotechnol 78:181–188

    Article  CAS  Google Scholar 

  • Wu DY, Ugozzoli L, Pal BK, Wallace RB (1989) Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A 86:2757–2760

    Article  CAS  Google Scholar 

  • Yan X, Yu HJ, Hong Q, Li SP (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 74:5556–5562

    Article  CAS  Google Scholar 

  • Zakataeva NP, Gronskiy SV, Sheremet AS, Kutukova EA, Novikova AE, Livshits VA (2007) A new function for the Bacillus PbuE purine base efflux pump: efflux of purine nucleosides. Res Microbiol 158:659–665

    Article  CAS  Google Scholar 

  • Zhang XZ, Yan X, Cui ZL, Hong Q, Li SP (2006) mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res 34:e71

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to J. Jomantas for the gift of the E40 bacteriophage and for his help with its use. We would also like to thank A. S. Mironov for providing the pKS1 plasmid and K. Matsuno for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia P. Zakataeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakataeva, N.P., Nikitina, O.V., Gronskiy, S.V. et al. A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Appl Microbiol Biotechnol 85, 1201–1209 (2010). https://doi.org/10.1007/s00253-009-2276-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2276-1

Keywords

Navigation