Skip to main content
Log in

Depressed Biofilm Production in Bacillus amyloliquefaciens C06 Causes γ-Polyglutamic Acid (γ-PGA) Overproduction

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillusamyloliquefaciens C06, a potential agent in biological preservation of post-harvest fruit, was found to secrete extra-cellular γ-polyglutamic acid (γ-PGA) in liquid culture. In this work, M306, a transposon mutant of B. amyloliquefaciens C06, defective in forming structured colony and displaying enhanced ability of producing γ-PGA, was obtained. Inverse PCR and quantitative reverse transcription PCR (qRT-PCR) analysis demonstrated that the defective phenotype in M306 was associated with an ORF showing high similarity to RBAM_034550 from B. amyloliquefaciens FZB42. In this paper, the ORF was designated pbrA, standing for γ-PGA production and biofilm formation regulatory factor. qRT-PCR analysis also indicated that pbrA down-regulated mRNA expression of epsD and yqxM, the crucial genes involved in biofilm formation, but affected little on expression of ywtB, the gene directing γ-PGA synthesis. Evaluations in γ-PGA productivity of wild-type C06 and its mutants C06ΔepsA and C06ΔtasA, respectively, deficient in producing exopolysaccharides (EPS) and TasA, revealed that γ-PGA overproduction in M306 was probably due to the redistributed metabolic flux caused by defective production of EPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashiuchi M, Soda K, Misono H (1999) A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun 263:6–12

    Article  CAS  PubMed  Google Scholar 

  2. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  Google Scholar 

  3. Birrer GA, Cromwick AM, Gross RA (1994) γ-poly (glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol 16:265–275

    Article  CAS  PubMed  Google Scholar 

  4. Bovarnick M (1942) The formation of extracellular d (-)-glutamic acid polypeptide by Bacillus subtilis. J Biol Chem 145:415–424

    Google Scholar 

  5. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626

    Article  CAS  PubMed  Google Scholar 

  6. Branda SS, Gonzalez-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186:3970–3979

    Article  CAS  PubMed  Google Scholar 

  7. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  PubMed  Google Scholar 

  8. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  9. Cromwick AM, Birrer GA, Gross RA (1996) Effects of pH and aeration on γ-poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 50:222–227

    Article  CAS  PubMed  Google Scholar 

  10. Cromwick AM, Gross RA (1995) Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ-poly (glutamic acid) formation. Int J Biol Macromol 17:259–267

    Article  CAS  PubMed  Google Scholar 

  11. Goto A, Kunioka M (1992) Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IFO 3335. Biosci Biotechnol Biochem 56:1031–1035

    Article  CAS  Google Scholar 

  12. Hasebe K, Inagaki M (1999) Preparation composition for external use containing poly (γ-glutamic acid) and vegetable extract in combination. Japanese Patent No. 11,240,827

  13. Ivanovics G, Bruckner V (1937) Chemische und immunologische Studien uber den Mechanismus der Milzbrandinfektion und Immunitat die chemische Struktur der Kapel-substanz des Milzbrand-bacillus und der serolisch identischen spezifichen Substanz des Bacillus mesentericus. Z Immun Exp Ther 90:304–310

    CAS  Google Scholar 

  14. Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749

    Article  CAS  PubMed  Google Scholar 

  15. Konno A, Taguchi T, Yamaguchi T (1989) Bakery products and noodles containing polyglutamic acid. US Patent No. 4,888,193

  16. Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M (1993) Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotechnol Biochem 44:501–506

    Google Scholar 

  17. Kurosaki T, Kitahara T, Fumoto S, Nishida K, Nakamura J, Niidome T, Kodama Y, Nakagawa H, To H, Sasaki H (2009) Ternary complexes of pDNA, polyethylenimine, and gamma-polyglutamic acid for gene delivery systems. Biomaterials 30:2846–2853

    Article  CAS  PubMed  Google Scholar 

  18. Le Breton Y, Mohapatra NP, Haldenwang WG (2006) In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 72:327–333

    Article  CAS  PubMed  Google Scholar 

  19. Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R (2008) Biofilm development with an emphasis on Bacillus subtilis. Curr Top Microbiol Immunol 322:1–16

    Article  CAS  PubMed  Google Scholar 

  20. Leonard CG, Housewright RD, Thorne CB (1958) Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J Bacteriol 76:499–503

    CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  22. Manocha B, Margaritis A (2008) Production and characterization of γ-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol 28:83–99

    Article  CAS  PubMed  Google Scholar 

  23. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M et al (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:205–210

    Article  Google Scholar 

  24. Ohsawa T, Tsukahara K, Ogura M (2009) Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis. Biosci Biotechnol Biochem 73:2096–2102

    Article  CAS  PubMed  Google Scholar 

  25. Osera C, Amati G, Calvio C, Galizzi A (2009) SwrAA activates poly-γ-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology 155:2282–2287

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  27. Shih IL, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–225

    Article  CAS  PubMed  Google Scholar 

  28. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

    Article  CAS  PubMed  Google Scholar 

  29. Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Mol Microbiol 57:1143–1158

    Article  CAS  PubMed  Google Scholar 

  30. Su Y, Li X, Liu Q, Hou Z, Zhu X, Guo X, Ling P (2010) Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol 101:4733–4736

    Article  CAS  PubMed  Google Scholar 

  31. Taniguchi M, Kato K, Shimauchi A, Ping X, Nakayama H, Fujita K-I, Tanaka T, Tarui Y, Hirasawa E (2005) Proposals for wastewater treatment by applying flocculating activity of cross-linked poly-γ-glutamic acid. J Biosci Bioeng 99:245–251

    Article  CAS  PubMed  Google Scholar 

  32. Troy FA (1973) Chemistry and biosynthesis of the poly(-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248:305–315

    CAS  PubMed  Google Scholar 

  33. Wu Q, Xu H, Shi N, Yao J, Li S, Ouyang P (2008) Improvement of poly(γ-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl Microbiol Biotechnol 79:527–535

    Article  CAS  PubMed  Google Scholar 

  34. Wu Q, Xu H, Xu L, Ouyang P (2006) Biosynthesis of poly (γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly (γ-glutamic acid). Process Biochem 41:1650–1655

    Article  CAS  Google Scholar 

  35. Xu H, Jiang M, Li H, Lu D, Ouyang P (2005) Efficient production of poly (γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem 40:519–523

    Article  CAS  Google Scholar 

  36. Zhou T, Schneider KE, Li XZ (2008) Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. Int J Food Microbiol 126:180–185

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by Agriculture and Agri-food Canada and also supported by grants from National Natural Science Fund of China (30570041), the National 863 Program of China (2006AA10Z172), the Program of International Science and Technology Cooperation (2009DFA32740), and the Special Nonprofit Scientific Research Program, P. R. China (3–23). J. Liu received a graduate scholarship from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewen Gao or Ting Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Ma, X., Wang, Y. et al. Depressed Biofilm Production in Bacillus amyloliquefaciens C06 Causes γ-Polyglutamic Acid (γ-PGA) Overproduction. Curr Microbiol 62, 235–241 (2011). https://doi.org/10.1007/s00284-010-9696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9696-0

Keywords

Navigation