Skip to main content
Log in

Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biological function of mannosylerythritol lipids (MELs) towards their producer, Pseudozyma antarctica, on plant surfaces was investigated. MEL-producing wild-type strain and its MEL production-defective mutant strain (ΔPaEMT1) were compared in terms of their phenotypic traits on the surface of plastic plates, onion peels, and fresh leaves of rice and wheat. While wild-type cells adhering on plastic surfaces and onion peels changed morphologically from single cells to elongated ones for a short period of about 4 h and 1 day, respectively, ΔPaEMT1 cells did not. Microscopic observation of both strains grown on plant leaf surfaces verified that the wild type colonized a significantly bigger area than that of ΔPaEMT1. However, when MELs were exogenously added to the mutant cells on plant surfaces, their colonized area became enlarged. High-performance liquid chromatography analysis revealed a secretion of higher amount of MELs in the cell suspension incubated with wheat leaf cuttings compared to that in the suspension without cuttings. Transcriptional analysis by real-time reverse transcriptase PCR verified that the expression of erythritol/mannose transferase gene and MELs transporter gene of P. antarctica increased in the cells inoculated onto wheat leaves at 4, 6, and 8 days of incubation, indicating a potential of P. antarctica to produce MELs on the leaves. These findings demonstrate that MELs produced by P. antarctica on plant surfaces could be expected to play a significant role in fungal morphological development and propagation on plant surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen TW, Quayyum HA, Burpee LL, Buck JW (2004) Effect of foliar disease on the epiphytic yeast communities of creeping bentgrass and tall fescue. Can J Microbiol 50:853–860

    Article  CAS  PubMed  Google Scholar 

  • Amaral PF, Coelho MA, Marrucho IM, Coutinho JA (2010) Biosurfactants from yeasts: characteristics, production and application. Adv Exp Med Biol 672:236–249

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Buck JW (2002) Adhesion on yeasts to leaf surfaces. In: Elliott VJ, Hecht-Poinar EI, Lindow SE (eds) Phyllosphere microbiology. APS Press, St Paul, MN, pp 53–68

    Google Scholar 

  • Avis TJ, Bélanger RR (2002) Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Res 2:5–8

    CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  PubMed  Google Scholar 

  • Boekhout T (2011) Pseudozyma Bandoni emend. Boekhout (1985) and a comparison with the yeast state of Ustilago maydis (De Candolle) Corda (1842). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts a taxonomic study, vol 3, 5th edn. Elsevier Science Publish, Amsterdam, The Netherlands, pp 1857–1868

    Chapter  Google Scholar 

  • Buxdorf K, Rahat I, Gafni A, Levy M (2013) The epiphytic fungus Pseudozyma aphidis induces JA- and SA/NPR1-independent local and systemic resistance. Plant Physiol 161:2014–2022. doi:10.1104/pp. 112.212969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, McNally DJ, Labbe C, Voyer N, Belzile F, Bélanger RR (2003) Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellobiose lipid with antifungal activity. Appl Environ Microbiol 69(5):2595–2602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clément-Mathieu G, Chain F, Marchand G, Bélanger RR (2008) Leaf and powdery mildew colonization by glycolipid-producing Pseudozyma species. Fungal Ecol 1:69–77

    Article  Google Scholar 

  • Feldbrügge M, Kellner R, Schipper K (2013) The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol 97(8):3253–3265. doi:10.1007/s00253-013-4777-1

    Article  PubMed  Google Scholar 

  • Fonseca A, Inácio J (2006) Phylloplane yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, Germany, pp 263–301

    Chapter  Google Scholar 

  • Gognies S, Barka EA, Gainvors-Claisse A, Belarbi A (2006) Interactions between yeasts and grapevines: filamentous growth, endopolygalacturonase and phytopathogenicity of colonizing yeasts. Microb Ecol 51(1):109–116. doi:10.1007/s00248-005-0098-y

    Article  PubMed  Google Scholar 

  • Hammami W, Castro CQ, Remus-Borel W, Labbe C, Bélanger RR (2011) Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi. Appl Environ Microbiol 77(3):926–933. doi:10.1128/AEM.01255-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hewald S, Josephs K, Bölker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71(6):3033–3040. doi:10.1128/AEM.71.6.3033-3040.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72(8):5469–5477. doi:10.1128/AEM.00506-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarvis WR, Shaw LA, Traquair JA (1989) Factors affecting antagonism of cucumber powdery mildew by Stephanoascus flocculosus and Stephanoascus rugulosus. Mycol Res 92:162–165

    Article  Google Scholar 

  • Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36

    Article  CAS  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001a) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23(20):1709–1714

    Article  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Endo A, Nakaiwa M, Nakane T, Akiya T (2001b) Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on ice-water slurry for cold thermal storage. Biotechnol Prog 17(2):362–365. doi:10.1021/bp000159f

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers—. J Biosci Bioeng 94(3):187–201

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto HK, Shinozaki Y, Cao XH, Morita T, Konishi M, Tago K, Kajiwara H, Koitabashi M, Yoshida S, Watanabe T, Sameshima-Yamashita Y, Nakajima-Kambe T, Tsushima S (2011) Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express 1:44. doi:10.1186/2191-0855-1-44

    Article  PubMed Central  PubMed  Google Scholar 

  • Klose J, Kronstad JW (2006) The multifunctional β-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot Cell 5(12):2047–2061. doi:10.1128/EC.00231-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klose J, de Sa MM, Kronstad JW (2004) Lipid-induced filamentous growth in Ustilago maydis. Mol Microbiol 52(3):823–835. doi:10.1111/j.1365-2958.2004.04019.x

    Article  CAS  PubMed  Google Scholar 

  • Klosterman SJ, Perlin MH, Garcia-Pedrajas M, Covert SF, Gold SE (2007) Genetics of morphogenesis and pathogenic development of Ustilago maydis. Adv Genet 57:1–47. doi:10.1016/s0065-2660(06)57001-4

    Article  CAS  PubMed  Google Scholar 

  • Mimée B, Labbé C, Bélanger RR (2009) Catabolism of flocculosin, an antimicrobial metabolite produced by Pseudozyma flocculosa. Glycobiology 19(9):995–1001. doi:10.1093/glycob/cwp078

    Article  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006) Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast 23(9):661–671. doi:10.1002/yea.1386

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007) Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Appl Microbiol Biotechnol 74(2):307–315. doi:10.1007/s00253-006-0672-3

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Ito E, Kitamoto HK, Takegawa K, Fukuoka T, Imura T, Kitamoto D (2010) Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica. Yeast 27(11):905–917. doi:10.1002/yea.1794

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Hirose N, Kitamoto D (2012) Isolation and screening of glycolipid biosurfactant producers from sugarcane. Biosci Biotechnol Biochem 76(9):1788–1791. doi:10.1271/bbb.120251

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Koike H, Koyama Y, Hagiwara H, Ito E, Fukuoka T, Imura T, Machida M, Kitamoto D (2013) Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritol lipids. Genome Announc 1(2):e0006413. doi:10.1128/genomeA.00064-13

    Article  PubMed  Google Scholar 

  • Rau U, Nguyen LA, Schulz S, Wray V, Nimtz M, Roeper H, Koch H, Lang S (2005) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 66(5):551–559. doi:10.1007/s00253-004-1672-9

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Um HJ, Min J, Rhee SK, Cho TJ, Kim YH, Lee J (2007) Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste. FEMS Yeast Res 7(6):1035–1045. doi:10.1111/j.1567-1364.2007.00251.x

    Article  CAS  PubMed  Google Scholar 

  • Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66(2):525–533. doi:10.1111/j.1365-2958.2007.05941.x

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Morita T, Fukuoka T, Imura T, Yanagidani S, Sogabe A, Kitamoto D, Kitagawa M (2012) The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin. J Oleo Sci 61(7):407–412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Xiao-Hong Cao and Satomi Takahashi (National Institute for Agro-Environmental Sciences) for experimental assistance. We also acknowledge the valuable comments of Dr. E. Suto in this research. This work was supported by JSPS KAKENHI Grant Number 23658083 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Kitamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, S., Morita, T., Shinozaki, Y. et al. Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces. Appl Microbiol Biotechnol 98, 6419–6429 (2014). https://doi.org/10.1007/s00253-014-5675-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5675-x

Keywords

Navigation