Skip to main content
Log in

Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Today microalgae represent a viable alternative source for high-value products. The specie Chlorella protothecoides (Cp), heterotrophically grown, has been widely studied and provides a high amount of lutein and fatty acids (FA) and has a good profile for biodiesel production. This work studies carotenoid and FA production by autotrophic grown Cp. Cp was grown until the medium’s nitrogen was depleted, then diluted in NaCl solution, resulting in nutritional, luminosity, and salinity stresses. Different NaCl concentrations were tested (10, 20, 30 g/L) at two different dilutions. After dilution, a color shifting from green to orange-red was noticed, showing carotenoid production. The best production of both carotenoids and FA was attained with a 20 g/L NaCl solution. The total carotenoid content was 0.8 % w/w (canthaxanthin (23.3 %), echinenone (14.7 %), free astaxanthin (7.1 %), and lutein/zeaxanthin (4.1 %)). Furthermore, the total lipid content reached 43.4 % w/w, with a FA composition of C18:1 (33.64 %), C16:0 (23.30 %), C18:2 (11.53 %), and less than 12 % of C18:3, which is needed to fulfill the biodiesel quality specifications (EN 14214).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Converti A, Casazza A, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • EN 14103 (2003) Fat and oil derivatives—fatty acid methyl esters (FAME)—determination of ester and linolenic acid methyl ester contents

  • EN 14214 (2008) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods

  • Fernández AFG, Camacho FG, Pérez JAS, Sevilla JMF, Molina Grima E (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58:605–616

    Article  Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer Berlin Heidelberg Publisher, Berlin ISBN 978-3-642-17996-9 e-ISBN 978-3-642-17997-6

  • Gouveia L, Veloso V, Reis A, Fernandes HL, Empis J, Novais JM (1996) Evolution of the pigments in Chlorella vulgaris during carotenogenesis. Bioresour Technol 57:157–163

    Article  CAS  Google Scholar 

  • Gouveia L, Gomes E, Empis J (1997) Use of Chlorella vulgaris in diets for rainbow trout to enhance pigmentation of muscle. J Appl Aquac 7:61–70

    Article  Google Scholar 

  • Gouveia L, Choubert G, Gomes E, Pereira N, Santinha J, Empis J (2002) Pigmentation of gilthead seabream, Sparus aurata (Lin 1875), using Chlorella vulgaris microalga. Aquac Res 33:987–993

    Article  CAS  Google Scholar 

  • Gouveia L, Rema P, Pereira O, Empis J (2003) Colouring ornamental fish Cyprinus carpio and Carassius auratus with microalgal biomass. Aquac Nutr 9:123–129

    Article  CAS  Google Scholar 

  • Gouveia L, Marques A, Silva TL, Reis A (2009) Neochloris oleabundans (UTEX # 1185), a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  CAS  Google Scholar 

  • Gouveia L, Marques A, Sousa JM, Moura P, Bandarra NM (2010) Microalgae source of natural bioactives as functional ingredients. IFIS Publishing's Online Journal. Food Science and Technology Bulletin™: Functional Foods, pp 21-37

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production, perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449

    Article  CAS  Google Scholar 

  • Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Li X, Hong-ying H, Han H, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 10114:5494–5500

    Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 184:160–167

    Article  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46:7073–7085

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 976:841–846

    Article  Google Scholar 

  • O’Grady J, Morgan JA (2011) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng 341:121–125

    Article  Google Scholar 

  • Park JS, Chyun JH, Kim YK, Line LL, Chew BP (2010) Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab 7:18–28

    Article  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil, strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 1021:100–112

    Article  Google Scholar 

  • Richmond A (2012) Diluting strong light for peak photosynthetic productivity in mass cultivation of microalgae. 9th European Workshop of European Society of Microalgal Biotechnology Nuthetal, Germany, 4-5 June

  • Rodriguez-Amaya DB (2005) A guide to carotenoid analysis in foods. ILSI Press, Washington, USA ISBN 1-57881-072-8

  • Santos CA, Ferreira ME, Lopes da Silva T, Gouveia L, Novais JM, Reis A (2011) A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities, taking advantage of complementary nutritional modes. J Ind Microbiol Biotechnol 38:909–917

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program, Biodiesel from Algae. Laboratory NREL, US Department of Energy

  • Shi XM, Chen F (1997) Stability of lutein under various storage conditions. Food Nahrung 41:38–41

    Article  CAS  Google Scholar 

  • Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  CAS  Google Scholar 

  • Valenzuela J, Mazurie A, Carslon RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:40

    Article  Google Scholar 

  • Valliammai T, Gnanam A, Mannar Mannan R (1987) Heat shock response of Chlorella protothecoides during greening. J Biosci 12:219–228

    Article  CAS  Google Scholar 

  • Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5:731–740

    Google Scholar 

  • Vonshak A (1986) Laboratory techniques for the cultivation of microalgae. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 117–143

    Google Scholar 

  • Wei D, Chen F, Chen G, Zhang X, Liu L, Zhang H (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 51:1088–1093

    Article  CAS  Google Scholar 

  • Wu QY, Sheng GY, Fu JM (1993) Comparative study on liposoluble compounds in autotrophic and heterotrophic Chlorella protothecoides. Acta Bot Sin 35:849–858

    CAS  Google Scholar 

  • Xu H, Miao X, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 1264:499–507

    Article  Google Scholar 

  • Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was part of “Microalgae as a sustainable raw material for biofuel production (Biodiesel, Bioethanol, Bio-H2, and Biogas)” (PTDC/AAC-AMB/100354/2008), a project sponsored by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia–FCT). Luca Campenni’, Beatriz P. Nobre, and Carla Santos thank FCT for the research grants SFRH/BD/66860/2009, SFRH/BPD/42004/2007, and SFRH/BD/38516/2007, respectively. The authors would also like to thank Dr. Stephanie Seddon-Brown for the English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gouveia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campenni’, L., Nobre, B.P., Santos, C.A. et al. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol 97, 1383–1393 (2013). https://doi.org/10.1007/s00253-012-4570-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4570-6

Keywords

Navigation