Skip to main content
Log in

Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 21 June 2014

Abstract

Hot-compressed water treatment of lignocellulose liberates numerous inhibitors that prevent ethanol fermentation of yeast Saccharomyces cerevisiae. Glycolaldehyde is one of the strongest fermentation inhibitors and we developed a tolerant strain by overexpressing ADH1 encoding an NADH-dependent reductase; however, its recovery was partial. In this study, to overcome this technical barrier, redox cofactor preference of glycolaldehyde detoxification was investigated. Glycolaldehyde-reducing activity of the ADH1-overexpressing strain was NADH-dependent but not NADPH-dependent. Moreover, genes encoding components of the pentose phosphate pathway, which generates intracellular NADPH, was upregulated in response to high concentrations of glycolaldehyde. Mutants defective in pentose phosphate pathways were sensitive to glycolaldehyde. Genome-wide survey identified GRE2 encoding a NADPH-dependent reductase as the gene that confers tolerance to glycolaldehyde. Overexpression of GRE2 in addition to ADH1 further improved the tolerance to glycolaldehyde. NADPH-dependent glycolaldehyde conversion to ethylene glycol and NADP+ content of the strain overexpressing both ADH1 and GRE2 were increased at 5 mM glycolaldehyde. Expression of GRE2 was increased in response to glycolaldehyde. Carbon metabolism of the strain was rerouted from glycerol to ethanol. Thus, it was concluded that the overexpression of GRE2 together with ADH1 restores glycolaldehyde tolerance by augmenting the NADPH-dependent reduction pathway in addition to NADH-dependent reduction pathway. The redox cofactor control for detoxification of glycolaldehyde proposed in this study could influence strategies for improving the tolerance of other fermentation inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot 82:340–349

    Article  CAS  Google Scholar 

  • Almeida JRM, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945

    Article  CAS  PubMed  Google Scholar 

  • Bruinenberg PM, Van Dijken JP, Scheffers WA (1983) A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol 129:953–964

    CAS  Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  CAS  Google Scholar 

  • Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14:366–379

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Porubleva L, Shearer G, Svrakic M, Holden LG, Dover JL, Johnston M, Chitnis PR, Kohl DH (2003) Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeast Saccharomyces cerevisiae. Yeast 20:545–554

    Article  CAS  PubMed  Google Scholar 

  • Costenoble R, Valadi H, Gustafsson L, Niklasson C, Franzén CJ (2000) Micro aerobic glycerol formation in Saccharomyces cerevisiae. Yeast 16:483–495

    Article  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficient yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

  • Grabowska D, Chelstowska A (2003) The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 278:13984–13988

    Article  CAS  PubMed  Google Scholar 

  • Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductases. Appl Environ Microbiol 75:7631–7638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath IS, Taherzadeh MJ, Niklasson C, Liden G (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75:540–549

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenergy Res 5:1043–1066

    Article  CAS  Google Scholar 

  • Jayakody LN, Hayashi N, Kitagaki H (2011) Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol Lett 33:285–292

    Article  CAS  PubMed  Google Scholar 

  • Jayakody LN, Horie K, Hayashi N, Kitagaki H (2012) Improvement of Saccharomyces cerevisiae to hot-compressed water treated cellulose by expression of ADH1. Appl Microbiol Biotechnol 94:273–283

    Article  CAS  PubMed  Google Scholar 

  • Ehara K, Saka S (2002) A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose 9:301–311

    Article  CAS  Google Scholar 

  • Katz M, Frejd T, Hahn-Hagerdal B, Gorwa-Grauslund MF (2003) Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 84:573–582

    Article  CAS  PubMed  Google Scholar 

  • Kitagaki H, Cowart LA, Matmati N, Montefusco D, Gandy J, de Avalos SV, Novgorodov SA, Zheng J, Obeid LM, Hannun YA (2009) ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 284:10818–10830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohrer K, Domdey H (1991) Preparation of high molecular weight RNA. Methods Enzymol 194:398–405

    Article  CAS  PubMed  Google Scholar 

  • Krantz M, Nordlander B, Valadi H, Johansson M, Gustafsson L, Hohmann S (2004) Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot Cell 3:1381–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Moon JA (2009) novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Slininger PJ (2006) Transcriptome dynamics of ethanologenic yeast in response to 5-hydroxymethylfurfural stress related to biomass conversion to ethanol. In: Mendez-Vilas A (ed) Recent research developments in multidisciplinary applied microbiology: understanding and exploiting microbes and their interactions-biological, physical, chemical and engineering aspects. Wiley, New York, pp 679–668

    Chapter  Google Scholar 

  • Liu ZL, Slininger PJ, Gorsich S (2005) Enhanced biotransformation of furfural and 5-hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Yamauchi K, Phaiiboonsilpa N, Saka S (2009) Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J Wood Sci 55:367–375

    Article  CAS  Google Scholar 

  • Moon J, Liu ZL (2012) Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances hmf reduction using additional cofactor NADPH. Enzyme Microbial Technol 50:115–120

    Article  CAS  Google Scholar 

  • Naik SN, Vaibhav VG, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2:69–77

    Article  CAS  PubMed  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1993) Fermentative performance of bacteria and yeasts in lignocellulosic hydrolysates. Process Biochem 28:249–257

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74:25–33

    Article  CAS  Google Scholar 

  • Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 6:455–464

    Article  Google Scholar 

  • Rep M, Proft M, Remize F, Tamas M, Serrano R, Thevelein JM (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40:1067–1083

    Article  CAS  PubMed  Google Scholar 

  • Roca C, Nielsen J, Olsson L (2003) Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol 69:4732–4736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues-Pousada C, Menezes RA, Pimentel C (2010) The Yap family and its role in stress response. Yeast 27:245–258

    Article  CAS  PubMed  Google Scholar 

  • Saint-Prix F, Bönquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technol 110:1570–1580

    Article  Google Scholar 

  • Sonderegger M, Schumperli M, Sauer U (2004) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl Environ Microbiol 70:2892–2897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Maris AJA, Abbott DA, Bellissimi E, Van Den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, Van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90:391–418

    Article  CAS  PubMed  Google Scholar 

  • Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32:199–224

    Article  Google Scholar 

  • Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:2402–2407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:395–403

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  CAS  Google Scholar 

  • Yu Y, Lou X, Wu H (2007) Some recent advances in hydrolysis of biomass in hot compressed water and its comparison with other hydrolysis methods. Energy Fuels 22:46–60

    Article  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Analytical Research Center for Experimental Sciences of Saga University for DNA sequencing. Part of this study was supported by JSPS KAKENHI (24580117) to HK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kitagaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

(PDF 490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayakody, L.N., Horie, K., Hayashi, N. et al. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae . Appl Microbiol Biotechnol 97, 6589–6600 (2013). https://doi.org/10.1007/s00253-013-4997-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4997-4

Keywords

Navigation