Skip to main content
Log in

Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum d-lactate productivity under oxygen deprivation

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We previously demonstrated the simplicity of oxygen-deprived Corynebacterium glutamicum to produce d-lactate, a primary building block of next-generation biodegradable plastics, at very high optical purity by introducing heterologous D-ldhA gene from Lactobacillus delbrueckii. Here, we independently evaluated the effects of overexpressing each of genes encoding the ten glycolytic enzymes on d-lactate production in C. glutamicum. We consequently show that while the reactions catalyzed by glucokinase (GLK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase had positive effects on d-lactate productivity by increasing 98, 39, 15, 13, and 10 %, respectively, in 10 h reactions in minimal salts medium, the reaction catalyzed by pyruvate kinase had large negative effect by decreasing 70 %. The other glycolytic enzymes did not affect d-lactate productivity when each of encoding genes was overexpressed. It is noteworthy that all reactions associated with positive effects are located upstream of glycerate-1,3-bisphosphate in the glycolytic pathway. The d-lactate yield also increased by especially overexpressing TPI encoding gene up to 94.5 %. Interestingly, overexpression of PFK encoding gene reduced the yield of succinate, one of the main by-products of d-lactate production, by 52 %, whereas overexpression of GAPDH encoding gene increased succinate yield by 26 %. Overexpression of GLK encoding gene markedly increased the yield of dihydroxyacetone and glycerol by 10- and 5.8-fold in exchange with decreasing the d-lactate yield. The effect of overexpressing glycolytic genes was also evaluated in 80 h long-term reactions. The variety of effects of overexpressing each of genes encoding the ten glycolytic enzymes on d-lactate production is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babul J, Clifton D, Kretschmer M, Fraenkel DG (1993) Glucose metabolism in Escherichia coli and the effect of increased amount of aldolase. Biochemistry 32:4685–4692

    Article  CAS  PubMed  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  PubMed  Google Scholar 

  • Davies SE, Brindle KM (1992) Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 31:4729–4735

    Article  CAS  PubMed  Google Scholar 

  • Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102

    Article  CAS  PubMed  Google Scholar 

  • Emmerling M, Bailey JE, Sauer U (2000) Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli. Biotechnol Bioeng 67:623–627

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Chang YH, Kimura Y (2007) Enhanced stereocomplex formation of poly(L-lactic acid) and poly (D-lactic acid) in the presence of stereoblock poly(lactic acid). Macromol Biosci 7:829–835

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78:865–875

    Article  CAS  PubMed  Google Scholar 

  • Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE (1998) Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol Bioeng 58:154–161

    Article  CAS  PubMed  Google Scholar 

  • Ikada Y, Jamshidi K, Tsuji H, Hyon S (1987) Stereocomplex formation between enantiomeric poly (lactides). Macromolecules 20: 904–906

    Google Scholar 

  • Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S. (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443–1451

    Google Scholar 

  • Inui M, Nakata K, Roh JH, Vertès AA, Yukawa H (2003) Isolation and molecular characterization of pMG160, a mobilizable cryptic plasmid from Rhodobacter blasticus. Appl Environ Microbiol 69:725–733

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004b) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Fujii M, Mori E, Inui M, Yukawa H (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87:159–165

    Article  CAS  PubMed  Google Scholar 

  • Karjomaa S, Suortti T, Lempiainen R, Selin J, Itavaara M (1998) Microbial degradation of poly-(L-lactic acid) oligomers. Polym Degrad Stab 59:333–336

    Article  CAS  Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (ed) Biology of industrial microorganisms. Cummings, London, pp 115–146

  • Koebmann BJ, Solem C, Pedersen MB, Nilsson D, Jensen PR (2002a) Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl Environ Microbiol 68:4274–4282

    Article  CAS  PubMed  Google Scholar 

  • Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002b) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916

    Article  CAS  PubMed  Google Scholar 

  • Larsson C, Nilsson A, Blomberg A, Gustafsson L. (1997) Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 179:7243–7250.

    Google Scholar 

  • Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77:3571–3581

    Google Scholar 

  • Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78:3325–3337

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Kitada S, Kinoshita S (1961) Studies on lysine fermentation I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol 7:145–154

    Article  CAS  Google Scholar 

  • Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858–7861

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M, Avramidis N (2012) Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzyme Microb Technol 49:197–202

    Article  Google Scholar 

  • Ramos A, Neves AR, Ventura R, Maycock C, Lopez P, Santos H (2004) Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Microbiology 150:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Rud I, Solem C, Jensen PR, Axelsson L, Naterstad K (2008) Co-factor engineering in lactobacilli: effects of uncoupled ATPase activity on metabolic fluxes in Lactobacillus plantarum and L. sakei. Metab Eng 10(5):207–215

  • Sambrook J, Fritsh E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santamaria R, Gil J, Mesas J, Martin J (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J Gen Microbiol 130:2237–2246

    CAS  Google Scholar 

  • Schaaff I, Heinisch J, Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290

    Article  CAS  PubMed  Google Scholar 

  • Sekine H, Shimada T, Hayashi C, Ishiguro A, Tomita F, Yokota A (2001) H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57:534–540

    Article  CAS  PubMed  Google Scholar 

  • Solem C, Koebmann BJ, Jensen PR (2003) Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J Bacteriol 185:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Snoep J, Yomano L, Westerhoff H, Ingram L (1995) Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 141:2329–2337

    Article  CAS  Google Scholar 

  • Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol 71:3369–3372

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H (2009) Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl Microbiol Biotechnol 87:1855–1866

    Article  Google Scholar 

  • Tsuge Y, Suzuki N, Inui M, Yukawa H (2007) Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 74:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Utrilla J, Gosset G, Martinez A (2009) ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate. J Ind Microbiol Biotechnol 36:1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H (2012) Overexpression of glycolytic genes enhances Corynebacterium glutamicum glucose metabolism and alanine production under oxygen-deprived conditions. Appl Environ Microbiol 78:4447–4457

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Okano K, Tanaka T, Ogino C, Kondo A (2011) Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 92:67–76

    Article  CAS  PubMed  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Shimizu K (2005) Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab Eng 7:104–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Crispinus A. Omumasaba for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuge, Y., Yamamoto, S., Suda, M. et al. Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum d-lactate productivity under oxygen deprivation. Appl Microbiol Biotechnol 97, 6693–6703 (2013). https://doi.org/10.1007/s00253-013-4986-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4986-7

Keywords

Navigation