Skip to main content
Log in

Induction of gene expression in bacteria at optimal growth temperatures

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Traditional temperature-sensitive systems use either heat shock (40–42 °C) or cold shock (15–23 °C) to induce gene expression at temperatures that are not the optimal temperature for host cell growth (37 °C). This impacts the overall productivity and yield by disturbing cell growth and cellular metabolism. Here, we have developed a new system which controls gene expression in Escherichia coli at more permissive temperatures. The temperature-sensitive cI857-P L system and the classic lacI-P lacO system were connected in series to control the gene of interest. When the culture temperature was lowered, the thermolabile cI857 repressor was activated and blocked the expression of lacI from P L. Subsequently, the decrease of LacI derepressed the expression of gene of interest from P lacO . Using a green fluorescent protein marker, we demonstrated that (1) gene expression was tightly regulated at 42 °C and strongly induced by lowering temperature to 25–37 °C; (2) different levels of gene expression can be induced by varying culture temperature; and (3) gene expression after induction was sustained until the end of the log phase. We then applied this system in the biosynthesis of acetoin and demonstrated that high yield and production could be achieved using temperature induction. The ability to express proteins at optimal growth temperatures without chemical inducers is advantageous for large-scale and industrial fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adiciptaningrum AM, Blomfield IC, Tans SJ (2009) Direct observation of type 1 fimbrial switching. EMBO Rep 10(5):527–532

    Article  CAS  Google Scholar 

  • Andreeßen B, Steinbüchel A (2012) Biotechnological conversion of glycerol to 2-amino-1, 3-propanediol (serinol) in recombinant Escherichia coli. Appl Microbiol Biotechnol 93(1):357–365. doi:10.1007/s00253-011-3364-6

    Article  Google Scholar 

  • Anesiadis N, Cluett WR, Mahadevan R (2008) Dynamic metabolic engineering for increasing bioprocess productivity. Metab Eng 10(5):255–266. doi:10.1016/j.ymben.2008.06.004

    Article  CAS  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Soon Lee T, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108(50):19949–19954. doi:10.1073/pnas.1106958108

    Article  CAS  Google Scholar 

  • Chao YP, Law W, Chen PT, Hung WB (2002) High production of heterologous proteins in Escherichia coli using the thermo-regulated T7 expression system. Appl Microbiol Biotechnol 58(4):446–453

    Article  CAS  Google Scholar 

  • Choi YJ, Morel L, Le François T, Bourque D, Bourget L, Groleau D, Massie B, Míguez CB (2010) Novel, versatile, and tightly regulated expression system for Escherichia coli strains. Appl Environ Microbiol 76(15):5058–5066. doi:10.1128/aem.00413-10

    Article  CAS  Google Scholar 

  • Clomburg J, Gonzalez R (2010) Biofuel production in Escherichia coli the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86(2):419–434. doi:10.1007/s00253-010-2446-1

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  Google Scholar 

  • Elowitz MB, Leibler S (1999) A synthetic oscillatory network of transcriptional regulators. J Biol Chem 274:6074–6079

    Article  Google Scholar 

  • Fang L, Jiang W, Bae W, Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37°C by mRNA stabilization. Mol Microbiol 23(2):355–364

    Article  CAS  Google Scholar 

  • Gadkar KG, Doyle Iii FJ, Edwards JS, Mahadevan R (2005) Estimating optimal profiles of genetic alterations using constraint-based models. Biotechnol Bioeng 89(2):243–251. doi:10.1002/bit.20349

    Article  CAS  Google Scholar 

  • George HJ, Watson RJ, Harbrecht DF, DeLorbe WJ (1987) A bacteriophage λ cI857 cassette controls λ PL expression vectors at physiologic temperatures. Nat Biotechnol 5(6):600–603

    Article  CAS  Google Scholar 

  • Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67(3):289–298. doi:10.1007/s00253-004-1814-0

    Article  CAS  Google Scholar 

  • Jiang X, Yang J, Zhang H, Zou H, Wang C, Xian M (2012) In vitro assembly of multiple DNA fragments using successive hybridization. PLoS One 7(1):e30267. doi:10.1371/journal.pone.0030267

    Article  CAS  Google Scholar 

  • Kobayashi H, Kærn M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 101(22):8414–8419. doi:10.1073/pnas.0402940101

    Article  CAS  Google Scholar 

  • Laluce C, Tognolli J, de Oliveira K, Souza C, Morais M (2009) Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability. Appl Microbiol Biotechnol 83(4):627–637. doi:10.1007/s00253-009-1885-z

    Article  CAS  Google Scholar 

  • Lee SK, Keasling JD (2006) Propionate-regulated high-yield protein production in Escherichia coli. Biotechnol Bioeng 93(5):912–918. doi:10.1002/bit.20784

    Article  CAS  Google Scholar 

  • Lee SK, Keasling JD (2008) Heterologous protein production in Escherichia coli using the propionate-inducible pPro system by conventional and auto-induction methods. Protein Expr Purif 61(2):197–203

    Article  CAS  Google Scholar 

  • Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3. doi:10.1038/msb4100196

  • Lissemore JL, Jankowski JT, Thomas CB, Mascotti DP, deHaseth PL (2000) Green fluorescent protein as a quantitative reporter of relative promoter activity in E. coli. Biotechniques 28(1):82–84, 86, 88–89

    CAS  Google Scholar 

  • Megerle JA, Fritz G, Gerland U, Jung K, Rädler JO (2008) Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J 95(4):2103–2115. doi:10.1529/biophysj.107.127191

    Article  CAS  Google Scholar 

  • Mujacic M, Cooper KW, Baneyx F (1999) Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238(2):325–332. doi:10.1016/s0378-1119(99)00328-5

    Article  CAS  Google Scholar 

  • Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264. doi:10.1007/s00253-011-3368-2

    Article  Google Scholar 

  • Nielsen DR, Yoon S-H, Yuan CJ, Prather KLJ (2010) Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J 5(3):274–284. doi:10.1002/biot.200900279

    Article  CAS  Google Scholar 

  • Qing G, Ma L-C, Khorchid A, Swapna GVT, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22(7):877–882

    Article  CAS  Google Scholar 

  • Schein CH (1991) Optimizing protein folding to the native state in bacteria. Curr Opin Biotechnol 2(5):746–750

    Article  CAS  Google Scholar 

  • Siemerink MAJ, Kuit W, López Contreras AM, Eggink G, van der Oost J, Kengen SWM (2011) d-2,3-Butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum. Appl Environ Microbiol 77(8):2582–2588. doi:10.1128/aem.01616-10

    Article  CAS  Google Scholar 

  • Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53(1):85–96. doi:10.1016/0378-1119(87)90095-3

    Article  CAS  Google Scholar 

  • Solomon KV, Prather KLJ (2011) The zero-sum game of pathway optimization: emerging paradigms for tuning gene expression. Bitechnol J 6(9):1064–1070. doi:10.1002/biot.201100086

    Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562

    Article  CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804. doi:10.1126/science.1139612

    Google Scholar 

  • Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516–519

    Article  CAS  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222. doi:10.1007/s00253-006-0465-8

    Article  CAS  Google Scholar 

  • Tsao C-Y, Hooshangi S, Wu H-C, Valdes JJ, Bentley WE (2010) Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metab Eng. doi:10.1016/j.ymben.2010.01.002

  • Ui S, Okajima Y, Mimura A, Kanai H, Kudo T (1997) Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J Ferment Bioeng 84(3):185–189. doi:10.1016/s0922-338x(97)82052-1

    Article  CAS  Google Scholar 

  • Valdez-Cruz NA, Caspeta L, Pérez NO, Ramírez OT, Trujillo-Roldán MA (2010) Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb Cell Fact 9(1):18. doi:10.1186/1475-2859-9-1

    Article  Google Scholar 

  • Vasina JA, Baneyx F (1997) Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 9(2):211–218. doi:10.1006/prep.1996.0678

    Article  CAS  Google Scholar 

  • Villaverde A, Benito A, Viaplana E, Cubarsi R (1993) Fine regulation of cI857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature. Appl Environ Microbiol 59(10):3485–3487

    CAS  Google Scholar 

  • Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33(2):127–140. doi:10.1080/10408410701364604

    Article  CAS  Google Scholar 

  • Yan Y, Lee C-C, Liao JC (2009) Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7(19):3914–3917

    Article  CAS  Google Scholar 

  • Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, Xian M (2012) Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Esherichia coli. Bioresour Technol. doi:10.1016/j.biortech.2011.10.042

  • Zhang M, Senoura T, Yang X, Nishizawa NK (2011) Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance. FEBS Lett 585(16):2604–2609. doi:10.1016/j.febslet.2011.07.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 21106170), the “Twelfth Five-Year Plan” in the National Science and Technology for the Rural Development in China (no. 2012BAD32B06), the National Defense Innovation Foundation of Chinese Academy of Sciences (no. CXJJ-11-M56), and the project of Academy-Locality Cooperation Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dexin Feng or Mo Xian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Zhang, H., Yang, J. et al. Induction of gene expression in bacteria at optimal growth temperatures. Appl Microbiol Biotechnol 97, 5423–5431 (2013). https://doi.org/10.1007/s00253-012-4633-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4633-8

Keywords

Navigation