Skip to main content
Log in

Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The fast growing unicellular green microalgae Chlorella protothecoides has attracted interest as a promising organism for commercial production of a high-value carotenoid, lutein, by heterotrophic fermentation. Effects of two oxidant-forming reactive oxygen species (ROS) on the biomass concentration, and yield and content of lutein in batch culture of heterotrophic Chlorella protothecoides were investigated in this study. The addition of 0.1 mmol/L H2O2 and 0.01 mmol/L NaClO plus 0.5 mmol/L Fe2+ to the culture led to the generation of ·OH and enhanced the lutein content from 1.75 to 1.90 and 1.95 mg/g, respectively. The lutein content further increased to 1.98 mg/g when 0.01 mmol/L H2O2 and 0.5 mmol/L NaClO were added to generate 1O2. The maximum yield of lutein (28.5, 29.8 and 31.4 mg/L) and a high biomass concentration (15.0, 15.3 and 15.9 g/L) were also achieved through the above treatments. The results indicated that 1O2 could promote lutein formation and enhance lutein production in heterotrophic Chlorella protothecoides. Moreover, 1O2 produced from the reaction of H2O2 and NaClO was more effective in enhancing lutein production and reducing biomass loss than ·OH from the reaction of H2O2 or NaClO plus Fe2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klaui H, In: Britton G, Goodwin T W, eds. Industrial and commercial uses of carotenoids, Carotenoid Chemistry and Biochemistry. Oxford: Pergamon Press, 1982. 309–328

    Chapter  Google Scholar 

  2. Shi X M, Chen F, Yuan J P, et al. Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol, 1997, 9: 445–450, 10.1023/A:1007938215655, 1:CAS:528:DyaK1cXisFGrsLo%3D

    Article  CAS  Google Scholar 

  3. Alexandra A R, Andrew S. The science behind lutein. Toxicol Lett, 2004, 150: 57–83, 10.1016/j.toxlet.2003.10.031

    Article  Google Scholar 

  4. Park J S, Chew B P, Wong, T S. Dietary lutein from marigold extract inhibits mammary tumor development in BALB/c mice. J Nutr, 1998, 128: 1650–1656, 9772131, 1:CAS:528:DyaK1cXmtlKit7c%3D

    PubMed  CAS  Google Scholar 

  5. Bone R I A, Landrum J T, Dixon Z. Lutein and zeaxanthin in the eyes, serum and diet of human subjects. Exp Eye Res, 2000, 71: 239–245, 10973733, 10.1006/exer.2000.0870, 1:CAS:528:DC%2BD3cXmtFGmurc%3D

    Article  PubMed  CAS  Google Scholar 

  6. Olmedilla B, Granado F, Blanco, et al. Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. J Sci Food Agric, 2001, 81: 904–909, 10.1002/jsfa.905, 1:CAS:528:DC%2BD3MXlt1Ght74%3D

    Article  CAS  Google Scholar 

  7. Beatty S, Nolan J, Kavanagh H, et al. Macular pigment optical density and its relationship with serum and dietary levels of lutein and zeaxanthin. Arch Biochem Biophy, 2004, 430: 70–76, 10.1016/j.abb.2004.03.015, 1:CAS:528:DC%2BD2cXmvFeltrg%3D

    Article  CAS  Google Scholar 

  8. Del Campo J A, Moreno J, Rodríguez H, et al. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. J Biotechnol, 2000, 76:51–59, 10784296, 10.1016/S0168-1656(99)00178-9

    Article  PubMed  Google Scholar 

  9. Del Campo J A, Rodríguez H, Moreno J, et al. Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol, 2001, 85:289–295, 11173095, 10.1016/S0168-1656(00)00380-1

    Article  PubMed  Google Scholar 

  10. Del Campo J A, Rodríguez H, Moreno J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol, 2004, 64: 848–854, 14689249, 10.1007/s00253-003-1510-5

    Article  PubMed  Google Scholar 

  11. Raymond Y N, Chen Feng. Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem, 2001, 36: 1175–1179, 10.1016/S0032-9592(01)00157-1

    Article  Google Scholar 

  12. Wu Z Y, Shi X M. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol, 2007, 44, 13–18, 17209808, 10.1111/j.1472-765X.2006.02038.x, 1:CAS:528:DC%2BD2sXitlyht7o%3D

    Article  PubMed  CAS  Google Scholar 

  13. Zhang X W, Shi X M, Chen F. A kinetic model for lutein production by the green microalga Chlorella protothecoides in heterotrophic culture. J Indust Microbiol Biotechnol, 1999, 23, 503–507, 10.1038/sj.jim.2900760, 1:CAS:528:DC%2BD3cXlsFOhtw%3D%3D

    Article  CAS  Google Scholar 

  14. Shi X M, Liu H J, Zhang X W, et al. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemi, 1999, 34: 341–347, 10.1016/S0032-9592(98)00101-0, 1:CAS:528:DyaK1MXksVSrtbg%3D

    Article  CAS  Google Scholar 

  15. Shi X M, Zhang X W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Tech, 2000, 27: 312–318, 10.1016/S0141-0229(00)00208-8, 1:CAS:528:DC%2BD3cXkslSjt7k%3D

    Article  CAS  Google Scholar 

  16. Shi X M. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog, 2002, 18: 723–727, 12153304, 10.1021/bp0101987, 1:CAS:528:DC%2BD38XltlCnsLY%3D

    Article  PubMed  CAS  Google Scholar 

  17. Shi X M, Wu Z W, Chen F. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res, 2006, 50, 763–768, 16865749, 10.1002/mnfr.200600037, 1:CAS:528:DC%2BD28XovFKrurY%3D

    Article  PubMed  CAS  Google Scholar 

  18. Orosa M, Torres E, Fidalgo P, et al. Production and analysis of secondary carotenoids in green algae. J Appl Phycol, 2000, 12: 553–556, 10.1023/A:1008173807143, 1:CAS:528:DC%2BD3cXoslejuro%3D

    Article  CAS  Google Scholar 

  19. Park E K, Lee G C. Astaxanthin production by Haematococcus pluvialis under various light intensity and wavelength. J Microbiol Biotechnol, 2001, 11: 1024–1030, 1:CAS:528:DC%2BD38XnsVehug%3D%3D

    CAS  Google Scholar 

  20. Salguero A, de la Morena B, Vigara J, et al. Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng, 2003, 20: 249–253, 12919805, 10.1016/S1389-0344(03)00065-0, 1:CAS:528:DC%2BD3sXmt1KhsrY%3D

    Article  PubMed  CAS  Google Scholar 

  21. Ip P F, Chen F. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem, 2005, 40: 3491–3496, 10.1016/j.procbio.2005.02.014, 1:CAS:528:DC%2BD2MXhtVeiurbI

    Article  CAS  Google Scholar 

  22. Shaish A, Avron M, Pick U, et al. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil. Planta, 1993, 190: 363–368, 10.1007/BF00196965, 1:CAS:528:DyaK3sXks1Oksb0%3D

    Article  CAS  Google Scholar 

  23. Fan L, Vonshak A, Zarka A, et al. Does astaxanthin protect Haematococcus against light damage. Natur forsch, 1998, 53: 90–93

    Google Scholar 

  24. Rise M, Cohen E, Vishkautsan M, et al. Accumulation of secondary carotenoids in Chlorella zofingiensis. J Plant Physiol, 1994, 144: 287–292, 1:CAS:528:DyaK2cXmslKqsrc%3D

    Article  CAS  Google Scholar 

  25. Bar E, Rise M, Vishkautsan M, et al. Pigments and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol, 1995, 146: 527–534, 1:CAS:528:DyaK2MXnsVyhsLg%3D

    Article  CAS  Google Scholar 

  26. Kobayashi M, Kakizono T, Nagai S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus. J Ferment Bioeng, 1993, 84,1: 94–99, 10.1016/S0922-338X(97)82794-8

    Article  Google Scholar 

  27. Chen F, Johns M R. Effect of C:N ratio and aeration on fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol, 1991, 3: 203–209, 10.1007/BF00003578, 1:CAS:528:DyaK38XhtVansrY%3D

    Article  CAS  Google Scholar 

  28. Shi X M, Chen F. Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Nahrung/Food, 1999, 43: 109–113, 10.1002/(SICI)1521-3803(19990301)43:2<109::AID-FOOD109>3.0.CO;2-K, 1:CAS:528:DyaK1MXmvVGmsL8%3D

    Article  CAS  Google Scholar 

  29. Halliwell B, Gutteridge M C. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett, 1992, 307: 108–112, 1322323, 10.1016/0014-5793(92)80911-Y, 1:CAS:528:DyaK38Xlt1Kmt7c%3D

    Article  PubMed  CAS  Google Scholar 

  30. Cui K, Luo X L, Xu K Y, et al. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuro-Psych, 2004, 28: 771–799, 10.1016/j.pnpbp.2004.05.023, 1:CAS:528:DC%2BD2cXnsFSqtLs%3D

    Article  CAS  Google Scholar 

  31. Zhao W N, Han Y S, Saishi H. Quenching of singlet inglet oxygen arisen from NaOCl - H2O2 system by carotenoids. Acta Biophy Sin, 1997, 13: 137–142, 1:CAS:528:DyaK2sXmvVCqtL0%3D

    CAS  Google Scholar 

  32. Olinescu R, Smith T. In: Boriotti S, Denis D, Shohov T, eds. Free radicals in medicine. Oxygen Free Radicals. New York: Nova Science Publishers, 2002. 23–34

    Google Scholar 

  33. Fu W Y, Xu L H, Zhang Y Y, et al. Regulatory effect of reactive oxygen species on apoptosis induced by chemicals. Chin Pharmacol Toxicol, 2002, 16: 464–470, 1:CAS:528:DC%2BD3sXmsVarsr0%3D

    CAS  Google Scholar 

  34. Fraser P D, Miura Y, Misawa N. In vitro characteization of astaxanthin biosynthesis enzymes. J Biol Chem, 1997, 272,10: 6128–6132, 9045623, 10.1074/jbc.272.10.6278, 1:CAS:528:DyaK2sXhvVOnu78%3D

    Article  PubMed  CAS  Google Scholar 

  35. Diretto G, Tavazza R, Welsch R, et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol, 2006, 6: 13, 16800876, 10.1186/1471-2229-6-13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wei.

Additional information

Supported by the National Key Project of Sci & Tech Supporting Programs Funded by Ministry of Science & Technology of China (Grant No. 2006BAD27B03), Sci & Tech Project of Guangzhou (Grant No. 2005Z3-E0331) and Sci & Tech Project of Guangdong (Grant No. 20052050166)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, D., Chen, F., Chen, G. et al. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. SCI CHINA SER C 51, 1088–1093 (2008). https://doi.org/10.1007/s11427-008-0145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0145-2

Keywords

Navigation