Skip to main content
Log in

Biochemical characterization of a thermostable β-1,3-xylanase from the hyperthermophilic eubacterium, Thermotoga neapolitana strain DSM 4359

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biochemical properties of a putative β-1,3-xylanase from the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 were determined from a recombinant protein (TnXyn26A) expressed in Escherichia coli. This enzyme showed specific hydrolytic activity against β-1,3-xylan and released β-1,3-xylobiose and β-1,3-xylotriose as main products. It displayed maximum activity at 85 °C during a 10-min incubation, and its activity half-life was 23.9 h at 85 °C. Enzyme activity was stable in the pH range 3–10, with pH 6.5 being optimal. Enzyme activity was significantly inhibited by the presence of N-bromosuccinimide (NBS). The insoluble β-1,3-xylan K m value was 10.35 mg/ml and the k cat value was 588.24 s−1. The observed high thermostability and catalytic efficiency of TnXyn26A is both industrially desirable and also aids an understanding of the chemistry of its hydrolytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aoki Y, Kamei Y (2006) Preparation of recombinant polysaccharide-degrading enzymes from the marine bacterium, Pseudomonas sp. ND137 for the production of protoplasts of Porphyra yezoensis. Eur J Phycol 41:321–328

    Article  CAS  Google Scholar 

  • Aoki T, Araki T, Kitamikado M (1988) Purification and characterization of an endo-β-1,3-xylanase from Vibrio sp. Nippon Suisan Gakkaishi 54:277–281

    Article  CAS  Google Scholar 

  • Araki T, Hayakawa M, Tamaru Y, Yoshimatsu K, Morishita T (1994) Isolation and regeneration of haploid protoplasts from Bangia atropurpurea (Rhodophyta) with marine bacterial enzymes. J Phycol 30:1040–1046

    Article  Google Scholar 

  • Araki T, Inoue N, Morishita T (1998) Purification and characterization of β-1,3-xylanase from a marine bacterium, Alcaligenes sp. XY-234. J Gen Appl Microbiol 44:269–274

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Tani S, Maeda K, Hashikawa S, Nakagawa H, Morishita T (1999) Purification and characterization of β-1,3-xylanase from a marine bacterium, Vibrio sp. XY-214. Biosci Biotechnol Biochem 63:2017–2019

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Hashikawa S, Morishita T (2000) Cloning, sequencing, and expression in Escherichia coli of the new gene encoding β-1,3-xylanase from a marine bacterium, Vibrio sp. strain XY-214. Appl Environ Microbiol 66:1741–1743

    Article  PubMed  CAS  Google Scholar 

  • Bailey RW, Bourne EJ (1960) Colour reactions given by sugars and diphenylamine-aniline spray reagents on paper chromatograms. J Chromatogr 4:206–213

    Article  CAS  Google Scholar 

  • Belkin S, Wirsen CO, Jannasch HW (1986) A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51:1180–1185

    PubMed  CAS  Google Scholar 

  • Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP, Henrissat B, Braithwaite KL, Gilbert HJ (1996) Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35:16195–16204

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Chen WP, Matsuo M, Yasui T (1986) Purification and some properties of β-1,3-xylanase from Aspergillus terreus A-07. Agric Biol Chem 50:1183–1194

    Article  CAS  Google Scholar 

  • Hashimoto H, Tamai Y, Okazaki F, Tamaru Y, Shimizu T, Araki T, Sato M (2005) The first crystal structure of a family 31 carbohydrate-binding module with affinity to β-1,3-xylan. FEBS Lett 579:4324–4328

    Article  PubMed  CAS  Google Scholar 

  • Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill RW (2001) Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem 276:31186–31192

    Article  PubMed  CAS  Google Scholar 

  • Iriki Y, Suzuki T, Nisizawa K, Miwa T (1960) Xylan of siphonaceous green algae. Nature 187:82–83

    Article  PubMed  CAS  Google Scholar 

  • Kiyohara M, Sakaguchi K, Yamaguchi K, Araki T, Nakamura T, Ito M (2005) Molecular cloning and characterization of a novel β-1,3-xylanase possessing two putative carbohydrate-binding modules from a marine bacterium Vibrio sp. strain AX-4. Biochem J 388:949–957

    Article  PubMed  CAS  Google Scholar 

  • Kiyohara M, Hama Y, Yamaguchi K, Ito M (2006) Structure of β-1,3-xylooligosaccharides generated from Caulerpa racemosa var. laete-virens β-1,3-xylan by the action of β-1,3-xylanase. J Biochem 140:369–373

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Okazaki F, Tamaru Y, Hashikawa S, Li YT, Araki T (2002) Novel carbohydrate-binding module of β-1,3-xylanase from a marine bacterium, Alcaligenes sp strain XY-234. J Bacteriol 184:2399–2403

    Article  PubMed  CAS  Google Scholar 

  • Okazaki F, Shiraki K, Tamaru Y, Araki T, Takagi M (2005) The first thermodynamic characterization of β-1,3-xylanase from a marine bacterium. Protein J 24:413–421

    Article  PubMed  CAS  Google Scholar 

  • Okazaki F, Ogino C, Kondo A, Mikami B, Kurebayashi Y, Tsuruta H (2011) Expression, crystallization and preliminary X-ray diffraction studies of thermostable β-1,3-xylanase from Thermotoga neapolitana strain DSM 4359. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:779–781

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Reiser CO, Kondruweit S, Erdmann H, Schmid RD, Sprinzl M (1992) Purification and characterization of a NADH oxidase from the thermophile Thermus thermophilus HB8. Eur J Biochem 205:881–885

    Article  PubMed  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Umemoto Y, Shibata T, Araki T (2012) D-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and D-xylulose production from β-1,3-xylan. Mar Biotechnol (NY) 14:10–20

    Article  CAS  Google Scholar 

  • Yamaura I, Matsumoto T, Funatsu M, Mukai E (1990) Purification and some properties of endo-1,3-β-D-xylanase from Pseudomonas sp. Pt-5. Agric Biol Chem 54:921–926

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative BioProduction, Kobe), Ministry of Education, Culture, Sports, Science and Technology, Japan. FO would like to thank Mika Okazaki for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazaki, F., Nakashima, N., Ogino, C. et al. Biochemical characterization of a thermostable β-1,3-xylanase from the hyperthermophilic eubacterium, Thermotoga neapolitana strain DSM 4359. Appl Microbiol Biotechnol 97, 6749–6757 (2013). https://doi.org/10.1007/s00253-012-4555-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4555-5

Keywords

Navigation