Skip to main content
Log in

Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Conversion of glycerol to 1,3-propanediol (1,3-PDO) is an attractive option to increase the economic efficiency of the biofuel industry. A bacterial strain that produced 1,3-PDO in the presence of glycerol was isolated from thin stillage, the fermentation residue of bioethanol production. This 1,3-PDO-producing organism was identified as Lactobacillus panis through biochemical characteristics and by 16S rRNA sequencing. Characterization of the L. panis strain hereafter designated as PM1 revealed it was an aerotolerant acidophilic anaerobe able to grow over a wide range of temperatures; tolerant to high concentrations of sodium chloride, ethanol, acetic acid, and lactic acid; and resistant to many common antibiotics. L. panis PM1 could utilize glucose, lactose, galactose, maltose, xylose, and arabinose, but could not grow on sucrose or fructose. Production of 1,3-PDO by L. panis PM1 occurred only when glucose was available as the carbon source in the absence of oxygen. These metabolic characteristics strongly suggested NADH recycling for glucose metabolism is achieved through 1,3-PDO production by this strain. These characteristics classified L. panis PM1 within the group III heterofermentative lactic acid bacteria, which includes the well-characterized 1,3-PDO-producing strain, Lactobacillus reuteri. Metabolite production profiles showed that L. panis PM1 produced considerable amounts of succinic acid (~11–12 mM) from normal MRS medium, which distinguishes this strain from L. reuteri strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbad-Andaloussi S, Manginot-Dürr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterisation of Clostridium butyricum DSM 5431 mutants with increased resistance to 1, 3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417

    CAS  Google Scholar 

  • Barbirato F, Camarasa-Claret C, Grivet JP, Bories A (1995) Glycerol fermentation by a new 1,3-propanediol-producing microorganism: Enterobacter agglomerans. Appl Microbiol Biotechnol 43:786–793

    Article  CAS  Google Scholar 

  • Bischoff KM, Skinner-Nemec KA, Leathers TD (2007) Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants. J Ind Microbiol Biotechnol 34:739–744

    Article  CAS  Google Scholar 

  • Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1, 3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38:453–457

    Article  CAS  Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    Article  CAS  Google Scholar 

  • Cheng KK, Liu HJ, Liu DH (2005) Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett 27:19–22

    Article  CAS  Google Scholar 

  • Cheng KK, Zhang JA, Liu DH, Sun Y, Yang MD, Xu JM (2006) Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett 28:1817–1821

    Article  CAS  Google Scholar 

  • da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotech Adv 27:30–39

    Article  Google Scholar 

  • Forage RG, Lin ECC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599

    CAS  Google Scholar 

  • Forge F (2007) Biofuel— an energy, environmental or agricultural policy? In: Service PIaR (ed). vol PRB 06-37B

  • Forsberg WC (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53:639–643

    CAS  Google Scholar 

  • Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1, 3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446

    Article  CAS  Google Scholar 

  • Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I (2005a) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity. J Ind Microbiol Biotechnol 32:391–396

    Article  CAS  Google Scholar 

  • Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005b) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336

    Article  CAS  Google Scholar 

  • Hirkala DLM, Germida JJ (2004) Field and soil microcosm studies on the survival and conjugation of a Pseudomonas putida strain bearing a recombination plasmid, pADPTel. Can J Microbiol 50:595–604

    Article  CAS  Google Scholar 

  • Hirschmann S, Baganz K, Koschik I, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforschung Volkenrode 5:261–267

    Google Scholar 

  • Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33:121–126

    Article  CAS  Google Scholar 

  • Huang H, Gong CS, Tsao GT (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 98-100:687–698

    Article  CAS  Google Scholar 

  • Koch JP, Hayashi S, Lin ECC (1964) The control of the dissimilation of glycerol and L-α-glycerolphosphate in Escherichia coli. J Biol Chem 239:3106–3108

    CAS  Google Scholar 

  • Lin RH, Liu HJ, Hao J, Cheng K, Liu DH (2005) Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Biotechnol Lett 27:1755–1759

    Article  CAS  Google Scholar 

  • Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Anenbaum SWT (1983) System development for linked-fermentation products of solvents from algal biomass. Appl Environ Microbiol 46:1017–1023

    CAS  Google Scholar 

  • Pedersen C, Jonsson H, Lindberg JE, Roos S (2004) Microbiological characterization of wet wheat distillers’ grain, with focus on isolation of Lactobacilli with potential as probiotics. Appl Environ Microbiol 70:1522–1527

    Article  CAS  Google Scholar 

  • Peng QL, Dileme FB, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296

    Article  Google Scholar 

  • Ratanapariyanuch K, Tyler RT, Jia Y, Shen J, Shim YY, Reaney MJT (2011) Rapid NMR method for the quantification of organic compounds in thin stillage. J Agric Food Chem 59:10454–10460

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Stieb M, Bernhard S (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch Microbiol 140:139–146

    Article  CAS  Google Scholar 

  • Sun J, Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739

    Article  Google Scholar 

  • Wiese BG, Strohmar W, Rainey FA, Diekmann H (1996) Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int J Syst Evol Microbiol 46:449–453

    CAS  Google Scholar 

  • Witt U, Müller RJ, Augusta J, Widdecke H, Deckwer WD (1994) Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol Chem Phys 195:793–802

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Article  CAS  Google Scholar 

  • Ye J-J, Neal JW, Cui X, Reizer J, Saier MHJ (1994) Regulation of the glucose:H1 symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. J Bacteriol 176:3484–3492

    CAS  Google Scholar 

  • Zeng AP, Bieb H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  Google Scholar 

  • Zhang YP, Li Y, Du CY, Liu M, Cao Z (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586

    Article  CAS  Google Scholar 

  • Zhao YN, Chen G, Yao SJ (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32:93–99

    Article  CAS  Google Scholar 

  • Zheng P, Wereath K, Sun JB, van den Heuvel J, Zeng AP (2006) Over expression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochem 41:2160–2169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Saskatchewan Agriculture Development Fund and Agricultural Bioproducts Innovation Program of Agriculture and Agri-Food Canada for supporting this research. We thank Pound-Maker Agventures Ltd. for thin stillage samples. We are obliged to Jori Harrison for her assistance in the laboratory experiments. Ms. Sylvia Yada is also acknowledged for her careful editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuji Tanaka.

Additional information

Nurul H. Khan and Tae Sun Kang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N.H., Kang, T.S., Grahame, D.A.S. et al. Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage. Appl Microbiol Biotechnol 97, 417–428 (2013). https://doi.org/10.1007/s00253-012-4386-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4386-4

Keywords

Navigation