Skip to main content
Log in

A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The cellobiose- and cellulose-responsive induction of the FIII-avicelase (cbhI), FII-carboxymethyl cellulase (cmc2), and FIa-xylanase (xynIa) genes is not regulated by XlnR in Aspergillus aculeatus, which suggests that this fungus possesses an unknown cellulase gene-activating pathway. To identify the regulatory factors involved in this pathway, we constructed a random insertional mutagenesis library using Agrobacterium tumefaciens-mediated transformation of A. aculeatus NCP2, which harbors a transcriptional fusion between the cbhI promoter (P CBHI ) and the orotidine 5′-phosphate decarboxylase gene (pyrG). Of the ~6,000 transformants screened, one 5-FOA-resistant transformant, S4-22, grew poorly on cellulose-containing media and exhibited reduced cellobiose-induced expression of cbhI. Southern blot analysis and nucleotide sequencing of the flanking regions of the T-DNA inserted in S4-22 indicated that the T-DNA was inserted within the coding region of a previously unreported Zn(II)2Cys6-transcription factor, which we designated the cellobiose response regulator (ClbR). The disruption of the clbR gene resulted in a significant reduction in the expression of cbhI and cmc2 in response to cellobiose and cellulose. Interestingly, the cellulose-responsive induction of FI-carboxymethyl cellulase (cmc1) and FIb-xylanase (xynIb) genes that are under the control of XlnR, was also reduced in the clbR-deficient mutant, but there was no effect on the induction of these genes in response to d-xylose or l-arabinose. These data demonstrate that ClbR participates in both XlnR-dependent and XlnR-independent cellobiose- and cellulose-responsive induction signaling pathways in A. aculeatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi H, Tani S, Kanamasa S, Sumitani J, Kawaguchi T (2009) Development of a homologous transformation system for Aspergillus aculeatus based on the sC gene encoding ATP-sulfurylase. Biosci Biotechnol Biochem 73:1197–1199

    Article  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon canser data sets. Cancer Res 64:5245–5250

    Article  CAS  Google Scholar 

  • Aro N, Saloheimo A, Ilmen M, Penttilä M (2001) AceII, a novel transcription activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314

    Article  CAS  Google Scholar 

  • Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  CAS  Google Scholar 

  • Battaglia E, Hansen S, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries R (2011a) Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 91:387–397

    Article  CAS  Google Scholar 

  • Battaglia E, Visser L, Nijssen A, van Veluw GJ, Wösten HAB, de Vries RP (2011b) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutinary adaptations in Eurotiales. Stud Mycol 69:31–38

    Article  CAS  Google Scholar 

  • Brunner K, Lichtenauer A, Kratochwill K, Delic M, Mach R (2007) Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Curr Genet 52:213–220

    Article  CAS  Google Scholar 

  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA 109:7397–7402

    Article  CAS  Google Scholar 

  • Cove DJ (1976a) Chlorate toxicity in Aspergillus nidulans—selection and characterization of chlorate resistant mutants. Heredity 36:191–203

    Article  CAS  Google Scholar 

  • Cove DJ (1976b) Chlorate toxicity in Aspergillus nidulans—studies of mutants altered in nitrate assimilation. Mol Gen Genet 146:147–159

    Article  CAS  Google Scholar 

  • Endo Y, Yokoyama M, Morimoto M, Shirai K, Chikamatsu G, Kato N, Tsukagoshi N, Kato M, Kobayashi T (2008) Novel promoter sequence required for inductive expression of the Aspergillus nidulans endoglucanase gene eglA. Biosci Biotechnol Biochem 72:312–320

  • Gomi K, Akeno T, Minetoki T, Ozeki K, Kumagai C, Okazaki N, Iimura Y (2000) Molecular cloning and characterization of a transcriptional activator gene, amyR, involved in the amylolytic gene expression in Aspergillus oryzae. Biosci Biotechnol Biochem 64:816–827

    Article  CAS  Google Scholar 

  • Goosen T, Bloemheuvel G, Gysler C, Debie D, Vandenbroek H, Swart K (1987) Transformation of Aspergillus niger using the homologous orotidine-5′-phosphate decarboxylase gene. Curr Genet 11:499–503

    Article  CAS  Google Scholar 

  • Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek C, Seiboth B (2006) d-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology 152:1507–1514

    Article  CAS  Google Scholar 

  • Karpichev I, Small G (1998) Global regulatory functions of Oaf1p and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol Cell Biol 18:6560–6570

    CAS  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    CAS  Google Scholar 

  • Kubicek CP, Penttilä ME (1998) Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 49–72

    Google Scholar 

  • Kunitake E, Tani S, Sumitani J, Kawaguchi T (2011) Agrobacterium tumefaciens-mediated transformation of Aspergillus aculeatus for insertional mutagenesis. AMB Express 1:46

    Article  Google Scholar 

  • McDonnell AV, Jiang T, Keating AE, Berger B (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22:356–358

    Article  CAS  Google Scholar 

  • Morikawa Y, Ohashi T, Mantani O, Okada H (1995) Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl Microbiol Biotech 44:106–111

    Article  CAS  Google Scholar 

  • Murao S, Kanamoto J, Arai M (1979) Isolation and identification of a cellulolytic enzyme producing microorganism. J Ferment Technol 57:151–156

    CAS  Google Scholar 

  • Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49:388–397

    Article  CAS  Google Scholar 

  • Noël J, Turcotte B (1998) Zinc cluster proteins Leu3p and Uga3p recognize highly related but distinct DNA targets. J Biol Chem 273:17463–17468

    Article  Google Scholar 

  • Punt PJ, Zegers ND, Busscher M, Pouwels PH, van den Hondel CA (1991) Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotech 17:19–33

    Article  CAS  Google Scholar 

  • Sakamoto R, Arai M, Murao S (1985) Enzymatic properties of three β-glucosidase from Aspergillus aculeatus no. F-50. Agric Biol Chem 49:1283–1290

    Article  CAS  Google Scholar 

  • Stricker A, Grosstessner-Hain K, Würleitner E, Mach R (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and d-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5:2128–2137

    Article  CAS  Google Scholar 

  • Stricker A, Steiger M, Mach R (2007) Xyrl receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 581:3915–3920

    Article  CAS  Google Scholar 

  • Suarez T, Dequeiroz M, Oestreicher N, Scazzocchio C (1995) The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationship with the PPR1 protein of Saccharomyces cerevisiae. EMBO J 14:1453–1467

    CAS  Google Scholar 

  • Sun J, Tian C, Diamond S, Glass NL (2012) Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell 11:482–493

    Article  CAS  Google Scholar 

  • Tani S, Katsuyama Y, Hayashi T, Suzuki H, Kato M, Gomi K, Kobayashi T, Tsukagoshi N (2001) Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans. Curr Genet 39:10–15

    Article  CAS  Google Scholar 

  • Tani S, Kanamasa S, Sumitani J, Arai M, Kawaguchi T (2012) XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose. Curr Genet 58:93–104

    Article  CAS  Google Scholar 

  • Todd R, Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 21:388–405

    Article  CAS  Google Scholar 

  • Tsuji G, Fujii S, Fujihara N, Hirose C, Tsuge S, Shiraishi T, Kubo Y (2003) Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J Gen Plant Pathol 69:230–239

    Article  CAS  Google Scholar 

  • van Peij N, Gielkens M, de Vries R, Visser J, de Graaff L (1998a) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619

    Google Scholar 

  • van Peij N, Visser J, de Graaff L (1998b) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27:131–142

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Young Scientists (B) (20780058) and a Grant-in-Aid for JSPS Fellows (23‧10697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Tani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunitake, E., Tani, S., Sumitani, Ji. et al. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus . Appl Microbiol Biotechnol 97, 2017–2028 (2013). https://doi.org/10.1007/s00253-012-4305-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4305-8

Keywords

Navigation