Skip to main content
Log in

Transformation of Aspergillus niger using the homologous orotidine-5′-phosphate-decarboxylase gene

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A homologous transformation system for the filamentous fungus Aspergillus niger has been developed, based on the orotidine-5′-phosphate-decarboxylase gene. A. niger Pyr mutants have been selected from 5-fluoroorotic acid resistant mutants. These mutants were found to comprise two complementation groups, pyrA and pyrB. The A. niger OMP-decarboxylase gene was isolated from a gene library by heterologous hybridization with the Neurospora crassa pyr4 gene. The cloned gene is capable to transform A. nidulans pyrG mutants at high frequencies. Transformation of A. niger pyrA mutants occurs with moderate frequencies (about 50 transformants/μg DNA) whereas the pyrB mutants cannot be complemented with the cloned OMP-decarboxylase gene. Analysis of the DNA of the A. niger PyrA+ transformants showed that transformation resulted in integration of the vector DNA into the genome by homologous recombination. Both gene replacements and integration of one or more copies of the complete vector have been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballance DJ, Turner G (1985) Gene 36:321–331

    Article  PubMed  Google Scholar 

  • Ballance DJ, Turner G (1986) Mol Gen Genet 202:271–275

    PubMed  Google Scholar 

  • Barbesgaard P (1977) Industrial enzymes produced by members of the genus Asprgillus. In: Smith JE, Pateman JA (eds) Genetics and Physiology of Aspergillus. Academic Press, London

    Google Scholar 

  • Berry DR, Chmiel A, Alobaidy A (1977) Citric acid production by Aspergillus niger. In: Smith JA, Pateman JA (eds) Genetics and Physiology of Aspergillus. Academic Press, London

    Google Scholar 

  • Blank J, Mager J, Bergmann ED (1955) J Chem Soc 2190–2193

  • Boeke JD, LaCroute F, Fink, GR (1984) Mol Gen Genet 197:345–346

    PubMed  Google Scholar 

  • Bos CJ, Slakhorst SM (1981) Can J Microbiol 27:400–407

    PubMed  Google Scholar 

  • Brand E (1947) Org Synthesis 22:59–61

    Google Scholar 

  • Brygoo J, Debuchy R (1985) Mol Gen Genet 200:128–131

    Google Scholar 

  • Buxton FP, Gwynne DI, Davies RW (1985) Gene 37:207–214

    Article  PubMed  Google Scholar 

  • Case ME, Schweizer M, Kushner SR, Giles NH (1979) Proc Natl Acad Sci USA 87:5259–5263

    Google Scholar 

  • Cove DJ (1966) Biochim Biophys Acta 113:51–56

    PubMed  Google Scholar 

  • Duschinsky R, Pleven E (1957) J Am Chem Soc 79:4559–4560

    Google Scholar 

  • Goddard JM, Caput D, Williams SR, Martin DW (1983) Proc Natl Acad Sci USA 80:4281–4285

    PubMed  Google Scholar 

  • Goosen T, Wernars K, Wennekes LMJ, Visser J, Bos CJ, Van den Broek HWJ, Van Gorcom RFM, Kos A, Van den Hondel CAMJJ, Pouwels PH (1984) Multiple copy integration of transforming sequences in Aspergillus nidulans. In: Proceedings Third European Congress on Biotechnology, part III. Verlag Chemie, Weinheim

    Google Scholar 

  • Hynes MJ (1979) Genetics 91:381–392

    PubMed  Google Scholar 

  • John MA, Peberdy IF (1984) Enz Microb Technol 6:386–389

    Article  Google Scholar 

  • Johnstone IL, Hughes SG, Clutterbuck AJ (1985) EMBO J 4:1307–1311

    PubMed  Google Scholar 

  • Jund R, LaCroute F (1972) J Bacteriol 109:196–202

    PubMed  Google Scholar 

  • Kelly JM, Hynes MJ (1985) EMBO J 4:475–479

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor New York

    Google Scholar 

  • Miller BL, Miller KJ, Timberlake WE (1985) Mol Cell Biol 5:1714–1721

    PubMed  Google Scholar 

  • Newbury SF, Glazebrook JA, Radford A (1986) Gene 43:51–58

    Article  PubMed  Google Scholar 

  • Nilsson B, Uhlén M, Josephson S, Gatenbeck S, Philipson L (1983) Nucleic Acids Res 11:8019–8030

    PubMed  Google Scholar 

  • Paietta JY, Marzluf GA (1985) Mol Cell Biol 5:1554–1559

    PubMed  Google Scholar 

  • Peberdy JF, Isaac S (1976) Microbios Letters 3:7–9

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LJ, MacDonald KD, Buxton AWJ (1953) Adv Genet 5:141–238

    PubMed  Google Scholar 

  • Razanamparani Y, Bégueret J (1986) Curr Genet 10:811–817

    PubMed  Google Scholar 

  • Shailubhai K, Sahasrabudhe SR, Vora KA, Modi VV (1984) Experientia 40:406–407

    Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Gene 26:205–221

    Article  PubMed  Google Scholar 

  • Vogelstein B, Gillespie D (1979) Proc Natl Acad Sci USA 76:615–619

    PubMed  Google Scholar 

  • Vollmer SJ, Yanofsky C (1986) Proc Natl Acad Sci USA 83:4869–4873

    Google Scholar 

  • Wernars K (1986) Thesis, Agricultural University, Wageningen, The Netherlands

  • Wernars K, Goosen T, Wennekes LMJ, Visser J, Bos CJ, Van den Broek HWJ, Van Gorcom RFM, Van den Hondel CAMJJ, Pouwels PH (1985) Curr Genet 9:361–368

    PubMed  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Proc Natl Acad Sci USA 81:1470–1474

    PubMed  Google Scholar 

  • Yelton MM, Timberlake WE, Van den Hondel CAMJJ (1985) Proc Natl Acad Sci USA 82:834–838

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goosen, T., Bloemheuvel, G., Gysler, C. et al. Transformation of Aspergillus niger using the homologous orotidine-5′-phosphate-decarboxylase gene. Curr Genet 11, 499–503 (1987). https://doi.org/10.1007/BF00384612

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384612

Key words

Navigation