Skip to main content
Log in

Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

(R)-o-Chloromandelic acid is the key precursor for the synthesis of Clopidogrel®, a best-selling cardiovascular drug. Although nitrilases are often used as an efficient tool in the production of α-hydroxy acids, there is no practical nitrilase specifically developed for (R)-o-chloromandelic acid. In this work, a new nitrilase from Labrenzia aggregata (LaN) was discovered for the first time by genomic data mining, which hydrolyzed o-chloromandelonitrile with high enantioselectivity, yielding (R)-o-chloromandelic acid in 96.5% ee. The LaN was overexpressed in Escherichia coli BL21 (DE3), purified, and its catalytic properties were studied. When o-chloromandelonitrile was used as the substrate, the V max and K m of LaN were 2.53 μmol min−1 mg−1 protein and 0.39 mM, respectively, indicating its high catalytic efficiency. In addition, a study of substrate spectrum showed that LaN prefers to hydrolyze arylacetonitriles. To relieve the substrate inhibition and to improve the productivity of LaN, a biphasic system of toluene–water (1:9, v/v) was adopted, in which o-chloromandelonitrile of 300 mM (apparent concentration, based on total volume) could be transformed by LaN in 8 h, giving an isolated yield of 94.5%. The development of LaN makes it possible to produce (R)-o-chloromandelic acid by deracemizing o-chloromandelonitrile with good ee value and high substrate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asano Y, Tamura K, Doi N, Ueatrongchit T, H-Kittikun A, Ohmiya T (2005) Screening for new hydroxynitrilases from plants. Biosci Biotechnol Biochem 69:2349–2357

    Article  CAS  Google Scholar 

  • Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee UC (2009) Enantioselective nitrilase from Pseudomonas putida: cloning, heterologous expression, and bioreactor studies. Mol Biotechnol 41:35–41

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Struc Biol 12:775–782

    Article  CAS  Google Scholar 

  • Chen Y, Xu JH, Pan J, Xu Y, Shi JB (2004) Catalytic resolution of (RS)-HMPC acetate by immobilized cells of Acinetobacter sp. CGMCC 0789 in a medium with organic cosolvent. J Mol Catal B Enzym 30:203–208

    Article  CAS  Google Scholar 

  • DeSantis G, Zhu ZL, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124:9024–9025

    Article  CAS  Google Scholar 

  • Dong HP, Liu ZQ, Zheng YG, Shen YC (2010) Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis. Appl Microbiol Biotechnol 87:1335–1345

    Article  CAS  Google Scholar 

  • Ema T, Ide S, Okita N, Sakai T (2008) Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Adv Synth Catal 350:2039–2044

    Article  CAS  Google Scholar 

  • Ema T, Okita N, Ide S, Sakai T (2007) Highly enantioselective and efficient synthesis of methyl (R)-o-chloromandelate with recombinant E. coli: toward practical and green access to clopidogrel. Org Biomol Chem 5:1175–1176

    Article  CAS  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  Google Scholar 

  • Fernandez-Lorente G, Fernández-Lafuente R, Palomo JM, Mateo C, Bastida A, Coca J, Haramboure T, Hernández-Justiz O, Terreni M, Guisán JM (2001) Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. J Mol Catal B Enzym 11:649–656

    Article  CAS  Google Scholar 

  • Gaisberger R, Weis R, Luiten R, Skranc W, Wubbolts M, Griengl H, Glieder A (2007) Counteracting expression deficiencies by anticipating posttranslational modification of PaHNL5-L1Q-A111G by genetic engineering. J Biotechnol 129:30–38

    Article  CAS  Google Scholar 

  • Glieder A, Weis R, Skranc W, Poechlauer P, Dreveny I, Majer S, Wubbolts M, Schwab H, Gruber K (2003) Comprehensive step-by-step engineering of an (R)-hydroxynitrile lyase for large-scale asymmetric synthesis. Angew Chem Int Ed 42:4815–4818

    Article  CAS  Google Scholar 

  • Gröger H (2001) Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv Synth Catal 343:547–558

    Article  Google Scholar 

  • He YC, Zhang ZJ, Xu JH, Liu YY (2010) Biocatalytic synthesis of (R)-(−)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401. J Ind Microbiol Biotechnol 37:741–750

    Article  CAS  Google Scholar 

  • Ju X, Yu HL, Pan J, Wei DZ, Xu JH (2010) Bioproduction of chiral mandelate by enantioselective deacylation of α-acetoxyphenylacetic acid using whole cells of newly isolated Pseudomonas sp ECU1011. Appl Microbiol Biotechnol 86:83–91

    Article  CAS  Google Scholar 

  • Kaul P, Banerjee A, Mayilraj S, Banerjee UC (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry 15:207–211

    Article  CAS  Google Scholar 

  • Kiziak C, Conradt D, Stolz A, Mattes R, Klein J (2005) Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 151:3639–3648

    Article  CAS  Google Scholar 

  • Kurono N, Yoshikawa T, Yamasaki M, Ohkuma T (2011) Enantioselective hydrocyanation of aldehydes catalyzed by [Li{Ru(phgly)2(binap)}]X (X = Cl, Br). Org Lett 13:1254–1257. doi:10.1021/ol200187d

    Article  CAS  Google Scholar 

  • Van Langen LM, Selassa RP, van Rantwijk F, Sheldon RA (2005) Cross-linked aggregates of (R)-oxynitrilase: a stable, recyclable biocatalyst for enantioselective hydrocyanation. Org Lett 7:327–329

    Article  Google Scholar 

  • Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137

    Article  Google Scholar 

  • Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. J Mol Catal B Enzym 24–25:89–98

    Article  Google Scholar 

  • Schreiner U, Hecher B, Obrowsky S, Waich K, Klempier N, Steinkellner G, Gruber K, Rozzell JD, Glieder A, Winkler M (2010) Directed evolution of Alcaligenes faecalis nitrilase. Enzyme Microb Technol 47:140–146

    Article  CAS  Google Scholar 

  • Seffernick JL, Samanta SK, Louie TM, Wackett LP, Subramanian M (2009) Investigative mining of sequence data for novel enzymes: a case study with nitrilases. J Biotechnol 143:17–26

    Article  CAS  Google Scholar 

  • Sun YH, Wan XB, Wang JP, Meng QH, Zhang HW, Jiang LJ, Zhang ZG (2005) Ru-catalyzed asymmetric hydrogenation of α-ketoesters with CeCl3·7H2O as additive. Org Lett 7:5425–5427

    Article  CAS  Google Scholar 

  • Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH (2011) Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresource Technol 102:7023–7028

    Article  CAS  Google Scholar 

  • Wang MX (2005) Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 35:117–130

    Article  Google Scholar 

  • Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY, Imanaka T (2010) Efficient production of (R)-(−)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochem 45:887–891

    Article  CAS  Google Scholar 

  • Zhang ZJ, Pan J, Liu JF, Xu JH, He YC, Liu YY (2011a) Significant enhancement of (R)-mandelic acid production by relieving substrate inhibition of recombinant nitrilase in toluene–water biphasic system. J Biotechnol 152:24–29

    Article  CAS  Google Scholar 

  • Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY (2011b) Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp ECU0401 and its potential for (R)-(−)-mandelic acid production. Bioproc Biosyst Eng 34:315–322

    Article  CAS  Google Scholar 

  • Zheng GW, Xu JH (2011) New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Curr Opin Biotechnol 22:784–792

    Article  CAS  Google Scholar 

  • Zhu DM, Mukherjee C, Biehl ER, Hua L (2007) Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol 129:645–650

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (grant number 20902023), Ministry of Science and Technology, People’s Republic of China (numbers 2011CB710800, 2011AA02A210), Shanghai Committee of Science and Technology (grant number 11431921600), Innovation Program of Shanghai Municipal Education Commission (grant number 11CXY24), and China National Special Fund for State Key Laboratory of Bioreactor Engineering (grant number 2060204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gao-Wei Zheng or Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CS., Zhang, ZJ., Li, CX. et al. Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata . Appl Microbiol Biotechnol 95, 91–99 (2012). https://doi.org/10.1007/s00253-012-3993-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3993-4

Keywords

Navigation