Skip to main content
Log in

Aerobic bioreduction of nickel(II) to elemental nickel with concomitant biomineralization

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although microorganisms have the potential to reduce metals, products with elementary forms are unusual. In the present study, a strain of Pseudomonas sp. MBR was tested for its ability to reduce metal ions to their elementary forms coupled to biomineralization under aerobic conditions. The Pseudomonas sp. MBR strain was able to reduce metals such as Fe(III), Mn(II), Cu(II), Ni(II), Cd(II), Co(II), Al(III), Se(IV), and Te(IV) as electron acceptors to elementary forms using citrate, lactate, pyruvate, succinate, malate, glucose, or ethanol as electron donors. Growth and reduction during biomineralization occurred within the pH range of 6.0 to 11.0 and temperature range of 4 to 40 °C, with an optimum growth temperature of 28 °C. The resistance of Ni(II) varied from 0.5 to 5 mM. Ni(II) reduction was still observed when nitrate was present in addition to oxygen as a potential electron acceptor. The Ni(II) reduction efficiency was related with the molar ratio of the electron donor to Ni(II). Unlike other dissimilatory metal-reducing bacteria, which oxidizes organic matter with Fe(III) or Mn(IV) as the sole electron acceptor coupled to energy production under facultative anaerobic conditions, this strain used oxygen as an electron acceptor combined with metal reduction. The aerobic metal reduction may relate to a co-metabolic reduction. Transmission electron microscopy images demonstrated that the cells had the ability to accumulate heavy metals, and that the detoxicity mechanism was intracellular metal reduction. These results suggested that the use of Pseudomonas sp. MBR could be promising for toxic heavy metal bioremediation and biological metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorela sorokiniana: characterization studies. J Hazard Mater 108:85–94

    Article  CAS  Google Scholar 

  • Antipov AN, Lyalikova NN, Khijniak TV, L’vov NP (2000) Vanadate Reduction by Molybdenum-free dissimilatory nitrate reductases from vanadate-reducing bacteria. IUBMB Life 50:39–42

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, D.C

    Google Scholar 

  • Bautista EM, Alexander M (1972) Reduction of inorganic compounds by soil microorganisms. Soil Sci Soc Am Proc 36:918–920

    Article  CAS  Google Scholar 

  • Cao X, Liu X, Dong X (2003) Alkaliphilus crotonatoxidans sp. nov., a strictly anaerobic, crotonate-dismutating bacterium isolated from a methanogenic environment. Int J Syst Evol Microbiol 53:971–975

    Article  CAS  Google Scholar 

  • Choudhary S, Sar P (2010) Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 186:336–343

    Article  Google Scholar 

  • Coby AJ, Picardal FW (2005) Inhibition of NO 3 and NO 2 reduction by microbial Fe(III) reduction: evidence of a reaction between NO 2 and cell surface-bound Fe2+. Appl Environ Microbiol 71:5267–5274

    Article  CAS  Google Scholar 

  • De-Windt W, Boon N, Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek 90:377–389

    Article  Google Scholar 

  • Fu JK, Liu YY, Gu PY, Tang DL, Lin ZY, Yao BX, Weng SZ (2000) Spectroscopic characterization on the biosorption and bioreduction of Ag(I) by Lactobacillus sp. A09. Acta Physicochim Sin 16:779–782

    Google Scholar 

  • Gorby YA, Lovley DR (1991) Electron transport in the dissimilatory iron reducer, GS-15. Appl Environ Microbiol 57:867–870

    CAS  Google Scholar 

  • Gorby YA, Caccavo F, Drektrah DB, Bolton H (1998) Microbial reduction of cobalt(III)EDTA in the presence and absence of manganese(IV) oxide. Environ Sci Technol 32:244–250

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NF (2008) Effects of anion species and concentration on the removal of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 158:615–20

    Article  CAS  Google Scholar 

  • Hussein H, Ibrahim SF, Kandeel K, Moawad H (2004) Biosorption of heavy metals from waste water using Pseudomonas sp. Electron J Biotechnol 7:30–37

    Article  Google Scholar 

  • Hussein H, Farag S, Kandil K, Moawad H (2005) Tolerance and uptake of heavy metals by Pseudomonads. Process Biochem 40:955–961

    Article  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl Environ Microbiol 67:3275–3279

    Article  CAS  Google Scholar 

  • Klonowska A, Heulin T, Vermeglio A (2005) Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 70:5607–5609

    Article  Google Scholar 

  • Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe (III), Co (III), U (VI), Cr (VI), and Tc (VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649

    Article  CAS  Google Scholar 

  • Liu J, Liu Q, Chen YF, Hu JJ, Li DP, Tao Y, He XH, Wang XM (2008) Identification of dissimilatory nitrate reduction to ammonium bacterium and biomineralization. J Sichuan Univ (Nat Sci Edn) 45:651–655

    CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  • Lloyd JR, Cole JA, Macaskie LE (1997) Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol 179:2014–2021

    CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (2000) Biological reduction and removal of pentavalent Np by the concerted action of two microorganisms. Environ Sci Technol 34:1297–1301

    Article  CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  CAS  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  CAS  Google Scholar 

  • Macy JM, Nunan K, Hagen KD, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis, gen. sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • McLean RJC, Fortin D, Brown DA (1996) Microbial metal-binding mechanisms and their relation to nuclear waste disposal. Can J Microbiol 42:392–400

    Article  CAS  Google Scholar 

  • Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–637

    Article  CAS  Google Scholar 

  • Morita RY, Moyer CL (2000) Origin of psychrophiles. In: Levin SA, Colwell R, Dailey G, Lubchenco J, Mooney HA, Schulze ED, Tilman GD (eds) Encyclopedia of biodiversity, vol 4. Academic, San Diego, pp 917–924

    Google Scholar 

  • Myers JM, Myers CR (2001) Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microbiol 67:260–269

    Article  CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  CAS  Google Scholar 

  • Neal AL, Rosso KM, Geesey GG, Gorby YA, Little BJ (2003) Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis. Geochim Cosmochim Acta 67:4489–4503

    Article  CAS  Google Scholar 

  • Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443

    CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    Article  CAS  Google Scholar 

  • Rajwade JM, Paknikar KM (2003) Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometallurgy 71:243–248

    Article  CAS  Google Scholar 

  • Rashamuse KJ, Whiteley CG (2007) Bioreduction of Pt (IV) from aqueous solution using sulphate-reducing bacteria. Appl Microbiol Biotechnol 75:1429–1435

    Article  CAS  Google Scholar 

  • Rege MA, Yonge DR, Mendoza DP, Petersen JN, Bereded-Samuel Y, Johnstone DL, Apel WA, Barnes JM (1999) Selenium reduction by a denitrifying consortium. Biotechnol Bioeng 62:479–484

    Article  CAS  Google Scholar 

  • Sar P, Kazy S, Singh S (2001) Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol 32:257–261

    Article  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Rev 34:181–186

    Article  CAS  Google Scholar 

  • Wang YT (2000) Microbial reduction of Chromate. In: Lovely DR (ed) Environmental microbe–metal interactions. American Society for Microbiology, Washington, D.C, pp 225–235

    Google Scholar 

  • Wani R, Kodam KM, Gawai KR, Dhakephalkar PK (2007) Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline crater lake. Appl Microbiol Biotechnol 75:627–632

    Article  CAS  Google Scholar 

  • Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696

    Article  CAS  Google Scholar 

  • Ye Q, Roh Y, Carroll SL, Blair B, Zhou J, Zhang CL, Fields MW (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602

    Article  Google Scholar 

  • Yong P, Rowson NA, Farr JP, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379

    Article  CAS  Google Scholar 

  • Yurkova NA, Lyalikova NN (1991) New vanadate-reducing facultative chemolithotrophic bacteria. Microbiology 59:672–677

    Google Scholar 

Download references

Acknowledgments

The present study was supported by National Natural Science Foundation of China (nos. 51074149 and 31000070). The authors gratefully acknowledge the Analysis and Testing Center Chengdu Branch, Chinese Academy of Sciences for the XPS analyses, as well as the Chengdu Institute of Geology and Mineral Resources for the SEM/EDS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, G., Li, D. & Zhang, L. Aerobic bioreduction of nickel(II) to elemental nickel with concomitant biomineralization. Appl Microbiol Biotechnol 96, 273–281 (2012). https://doi.org/10.1007/s00253-011-3827-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3827-9

Keywords

Navigation