Skip to main content
Log in

Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil–water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasnezhad H, Gray M, Foght J (2008) Two different mechanisms for adhesion of Gram-negative bacterium Pseudomonas fluorescens LP6a to an oil–water interface. Colloids Surf B Biointerfaces 62:36–41

    Article  CAS  PubMed  Google Scholar 

  • Abbasnezhad H, Foght J, Gray M (2011) Adhesion to the hydrocarbon phase increases phenanthrene degradation by Pseudomonas fluorescens LP6a. Biodegradation 22:485–496

    Article  CAS  PubMed  Google Scholar 

  • Ahimou F, Denis FA, Touhami A, Dufrene YF (2002) Probing microbial cell surface charges by atomic force microscopy. Langmuir 18:9937–9941

    Article  CAS  Google Scholar 

  • Albertsson P-Å (1986) Partition of cell particles and macromolecules, 3rd edn. Wiley, New York

    Google Scholar 

  • Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Philp J (2005) Bioremediation; applied microbial solutions for real-world environmental cleanup. ASM, Washington, D.C., p 366

    Book  Google Scholar 

  • Babu JP, Beachey EH, Simpson WA (1986) Inhibition of the interaction of Streptococcus sanguis with hexadecane droplets by 55- and 60-kilodalton hydrophobic proteins of human saliva. Infect Immun 53:278–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldi F, Ivosevic N, Minacci A, Pepi M, Rani R, Svetlicic V, Zutic V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65:2041–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldi F, Pepi M, Capone A, della Giovampaola C, Milanesi C, Fani R, Focarelli R (2003) Envelope glycosylation determined by lectins in microscopy sections of Acinetobacter venetianus induced by diesel fuel. Res Microbiol 154:417–424

    Article  CAS  PubMed  Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66:1834–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendinger B, Rijnaarts HHM, Alterndorf K, Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bihari Z, Pettko-Szandtner A, Csanadi G, Balazs M, Bartos P, Kesseru P, Kiss I, Mecs I (2007) Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46. Z Naturforsch C: J Biosci 62:285–295

    Article  CAS  Google Scholar 

  • Bolshakova AV, Kiselyova OI, Yaminsky IV (2004) Microbial surfaces investigated using atomic force microscopy. Biotechnol Prog 20:1615–1622

    Article  CAS  PubMed  Google Scholar 

  • Bos P, de Boer WE (1968) Some aspects of the utilization of hydrocarbons by yeasts. Antonie Van Leeuwenhoek 34:241–243

    Article  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Substrate availability in phenanthrene biodegradation—transfer mechanism and influence on metabolism. Appl Microbiol Biotechnol 43:952–960

    Article  CAS  PubMed  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1997) An interfacial uptake mechanism for the degradation of pyrene by a Rhodococcus strain. Microbiology 143:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    Article  PubMed  Google Scholar 

  • Bouchez-Naïtali M, Blanchet D, Bardin V, Vandecasteele JP (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147:2537–2543

    Article  Google Scholar 

  • Bressler DC, Gray MR (2003) Transport and reaction processes in bioremediation of organic contaminants. 1. Review of bacterial degradation and transport. Int J Chem React Eng 1:R3

    Google Scholar 

  • Busscher HJ, van der Mei HC (2006) Microbial adhesion in flow displacement systems. Clin Microbiol Rev 19:127–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Busscher JF, Norde W, Sharma PK, van der Mei HC (2010) Interfacial re-arrangement in initial microbial adhesion to surfaces. Curr Opin Colloid Interface Sci 15:510–517

    Article  CAS  Google Scholar 

  • Cavalca L, Rao M, Bernasconi S, Colombo M, Andreoni V, Gianfreda L (2008) Biodegradation of phenanthrene and analysis of degrading cultures in the presence of a model organo-mineral matrix and of a simulated NAPL phase. Biodegradation 19:1–13

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Mukherji S, Mukherji S (2010) Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids Surf B Biointerfaces 78:101–108

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty M, Singh HD, Baruah JN (1975) A kinetic model for microbial growth on liquid hydrocarbons. Biotechnol Bioeng 17:399–412

    Article  CAS  Google Scholar 

  • Chen G, Zhu H (2004) Bacterial deposition in porous medium as impacted by solution chemistry. Res Microbiol 155:467–474

    Article  CAS  PubMed  Google Scholar 

  • Christensen GD, Simpson WA, Anglen JO, Gainor BJ (2000) Methods for evaluating attached bacteria and biofilms: an overview. In: An YH, Friedman RJ (eds) Handbook of bacterial adhesion: principles, methods, and applications, 1st edn. Humana, Totowa, pp 213–234

    Chapter  Google Scholar 

  • Chrzanowski Ł, Kaczorek E, Olszanowski A (2005) Relation between Candida maltosa hydrophobicity and hydrocarbon biodegradation. World J Microb Biot 21:1273–1277

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320

    Article  CAS  PubMed  Google Scholar 

  • Dorobantu LS, Gray MR (2010) Application of atomic force microscopy in bacterial research. Scanning 32:74–96

    Article  CAS  PubMed  Google Scholar 

  • Dorobantu LS, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil–water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70:6333–6336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2008) Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 24:4944–4951

    Article  CAS  PubMed  Google Scholar 

  • Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2009) Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Langmuir 25:6968–6976

    Article  CAS  PubMed  Google Scholar 

  • Doyle RJ, Rosenberg M (eds) (1990) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, D.C

    Google Scholar 

  • Dunn IJ (1968) An interfacial kinetics model for hydrocarbons oxidation. Biotechnol Bioeng 10:891–894

    Article  CAS  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57:1441–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eganhouse RP, Calder JA (1976) Solubility of medium molecular-weight aromatic-hydrocarbons and effects of hydrocarbon co-solutes and salinity. Geochim Cosmochim Acta 40:555–561

    Article  CAS  Google Scholar 

  • Fang HHP, Chan KY, Xu LC (2000) Quantification of bacterial adhesion forces using atomic force microscopy (AFM). J Microbiol Methods 40:89–97

    Article  CAS  PubMed  Google Scholar 

  • Foght JM (2004) Whole-cell bio-processing of aromatic compounds in crude oil and fuels. Surface Sci Catal 151:145–175

    Article  CAS  Google Scholar 

  • Foght JM, Westlake DWS (1988) Degradation of polycyclic aromatic-hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol 34:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Foght JM, Westlake DWS (1996) Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens. Biodegradation 7:353–366

    Article  CAS  PubMed  Google Scholar 

  • Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E (2008) Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol 63:238–248

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson C, Khilman S, Kasemo B, Steel DM (1998a) In vitro real-time characterization of cell attachment and spreading. J Mater Sci Mater Med 9:785–788

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson C, Kihlman S, Rodahl M, Kasemo B (1998b) The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion. Langmuir 14:248–251

    Article  CAS  Google Scholar 

  • Friedrich M, Grosser RJ, Kern EA, Inskeep WP, Ward DM (2000) Effect of model sorptive phases on phenanthrene biodegradation: molecular analysis of enrichments and isolates suggests selection based on bioavailability. Appl Environ Microbiol 66:2703–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Junco M, De Olmedo E, Ortega-Calvo J (2001) Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environ Microbiol 3:561–569

    Article  CAS  PubMed  Google Scholar 

  • Goldberg S, Rosenberg M (1991) Bacterial desorption by commercial mouthwashes vs two-phase oil:water formulations. Biofouling 3:193–198

    Article  CAS  Google Scholar 

  • Goldberg S, Konis Y, Rosenberg M (1990a) Effect of cetylpyridinium chloride on microbial adhesion to hexadecane and polystyrene. Appl Environ Microbiol 56:1678–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg S, Doyle RJ, Rosenberg M (1990b) Mechanism of enhancement of microbial cell surface hydrophobicity by cationic polymers. J Bacteriol 172:5650–5654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaud R (2010) Chapter 46: biofilm development at interfaces between hydrophobic organic compounds and water. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1491–1499

    Chapter  Google Scholar 

  • Grosser RJ, Friedrich M, Ward DM, Inskeep WP (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66:2695–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18:97–105

    Article  CAS  Google Scholar 

  • Harms H, Wick LY (2010) Chapter 23: determining the tendency of microorganisms to interact with hydrocarbon phases. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3631–3639

    Chapter  Google Scholar 

  • Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms H, Smith KEC, Wick LY (2010a) Chapter 42: problems of hydrophobicity/bioavailability. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1439–1450

    Google Scholar 

  • Harms H, Smith KEC, Wick LY (2010b) Chapter 45: microorganism-hydrophobic compound interactions. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1479–1490

  • Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces 14:105–119

    Article  CAS  Google Scholar 

  • Hori K, Matsuzaki Y, Tanji Y, Unno H (2002a) Effect of dispersing oil phase on the biodegradability of a solid alkane dissolved in non-biodegradable oil. Appl Microbiol Biotechnol 59:574–579

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Yamaji M, Tanji Y, Unno H, Ishikawa Y (2002b) A new device for in situ sampling of dispersion for image analysis. Meas Sci Technol 13:N27–N29

    Article  CAS  Google Scholar 

  • Hori K, Hiramatsu N, Nannbu M, Kanie K, Okochi M, Honda H, Watanabe H (2009) Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. T1S1-127, induced by growth temperature and its effects on the toluene conversion rate. J Biosci Bioeng 107:250–255

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Ishikawa M, Yamada M, Higuchi A, Ishikawa Y, Ebi H (2011) Production of peritrichate bacterionanofibers and their proteinaceous components by Acinetobacter sp. Tol5 cells affected by growth substrates. J Biosci Bioeng 111:31–36

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi N, Sunairi M, Anzai H, Morisaki H, Nakajima M (2003) Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrate in Rhodococcus. Colloids Surf B Biointerfaces 30:51–60

    Article  CAS  Google Scholar 

  • Iwabuchi N, Sharma PK, Sunairi M, Kishi E, Sugita K, van der Mei HC, Nakajima M, Busscher HJ (2009) Role of interfacial tensions in the translocation of Rhodococcus erythropolis during growth in a two phase culture. Environ Sci Technol 43:8290–8294

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63:452–459

    Article  CAS  PubMed  Google Scholar 

  • Jones DS, Adair CG, Mawhinney WM, Gorman SP (1996) Standardisation and comparison of methods employed for microbial cell surface hydrophobicity and charge determination. Int J Pharm 131:83–89

    Article  CAS  Google Scholar 

  • Kaczorek E, Moszynska S, Olszanowski A (2011) Modification of cell surface properties of Pseudomonas alcaligenes S22 during hydrocarbon biodegradation. Biodegradation 22:359–366

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Yeung A, Foght JM, Gray MR (2008a) Hydrophobic bacteria at the hexadecane–water interface: examination of micrometre-scale interfacial properties. Colloids Surf B Biointerfaces 67:59–66

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Yeung A, Foght JM, Gray MR (2008b) Mechanical properties of hexadecane–water interfaces adsorbed with hydrophobic bacteria. Colloids Surf B Biointerfaces 62:273–279

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RS, Finnerty WR, Sudarsanan K, Young RA (1975) Microbial assimilation of hydrocarbons. 1. The fine-structure of a hydrocarbon oxidizing Acinetobacter sp. Arch Microbiol 102:75–83

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Foght JM, Gray MR (2002) Selective transport and accumulation of alkanes by Rhodococcus erythropolis S + 14He. Biotechnol Bioeng 80:650–659

    Article  CAS  PubMed  Google Scholar 

  • Klein B, Bouriat P, Goulas P, Grimaud R (2010) Behaviour of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane-water interface. Biotechnol Bioeng 105:461–468

    Article  CAS  PubMed  Google Scholar 

  • Koch AL (1990) Diffusion—the crucial process in many aspects of the biology of bacteria. Adv Microb Ecol 11:37–70

    Article  Google Scholar 

  • Krekeler C, Ziehr H, Klein J (1989) Physical methods for characterization of microbial cell surfaces. Experientia 45:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Link A, Chen M, Powers SE, Grimberg SJ (2010) Effects of growth conditions and NAPL presence on transport of Pseudomonas saccharophilia P15 through porous media. Water Res 44:2792–2802

    Article  CAS  Google Scholar 

  • Mackay D, Shiu WY, Wolkoff AW (1975) Gas chromatographic determination of low concentrations of hydrocarbons in water by vapor phase extraction. ASTM Spec Tech Publ 573:251–258

    CAS  Google Scholar 

  • MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805

    Article  CAS  Google Scholar 

  • Marchesi JR, Owen SA, White GF, House WA, Russell NJ (1994a) SDS-degrading bacteria attach to riverine sediment in response to the surfactant or its primary biodegradation product dodecan-1-ol. Microbiology 140:2999–3006

    Article  CAS  PubMed  Google Scholar 

  • Marchesi JR, White GF, House WA, Russell NJ (1994b) Bacterial cell hydrophobicity is modified during the biodegradation of anionic surfactants. FEMS Microbiol Lett 124:387–392

    Article  CAS  Google Scholar 

  • Marshal KC (ed) (1984) Microbial adhesion and aggregation. Springer, Berlin

    Google Scholar 

  • Marshal KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    Article  Google Scholar 

  • Marshall KC (1980) Microorganisms and interfaces. Bioscience 30:246–249

    Article  Google Scholar 

  • Marshall KC (1986) Adsorption and adhesion processes in microbial growth at interfaces. Adv Colloid Interface Sci 25:59–86

    Article  CAS  PubMed  Google Scholar 

  • Meinders JM, van der Mei HC, Busscher HJ (1995) Deposition efficiency and reversibility of bacterial adhesion under flow. J Colloid Interface Sci 176:329–341

    Article  CAS  Google Scholar 

  • Miura Y, Okazaki M, Hamada S, Murakawa S, Yugen R (1977) Assimilation of liquid hydrocarbon by microorganisms. I. Mechanism of hydrocarbon uptake. Biotechnol Bioeng 19:701–714

    Article  CAS  PubMed  Google Scholar 

  • Mohanty G, Mukherji S (2007) Effect of an emulsifying surfactant on diesel degradation by cultures exhibiting inducible cell surface hydrophobicity. J Chem Technol Biotechnol 82:1004–1011

    Article  CAS  Google Scholar 

  • Mudd S, Mudd EBH (1924) The penetration of bacteria through capillary spaces. IV. A kinetic mechanism in interfaces. J Exp Med 40:633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Nakahara T, Erickson LE, Gutierrez JR (1977) Characteristics of hydrocarbon uptake in cultures with two liquid phases. Biotechnol Bioeng 19:9–25

    Article  CAS  PubMed  Google Scholar 

  • Nakahara T, Hisatsuka K, Minoda Y (1981) Effect of emulsification on growth and respiration of microorganisms in hydrocarbon media. J Ferment Technol 59:415–418

    CAS  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neufeld RJ, Zajic JE (1984) The surface activity of Acinetobacter calcoaceticus sp. 2CA2. Biotechnol Bioeng 26:1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Neufeld RJ, Zajic JE, Gerson DF (1980) Cell surface measurements in hydrocarbon and carbohydrate fermentations. Appl Environ Microbiol 39:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, Wick LY, Heipieper HJ (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72:4232–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman RS, Frontera-Suau R, Morris PJ (2002) Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Appl Environ Microbiol 68:5096–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notomista E, Pennacchio F, Cafaro V, Smaldone G, Izzo V, Troncone L, Varcamonti M, Di Donato A (2011) The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb Ecol 61:582–594

    Article  CAS  PubMed  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh E (2007a) Insight into heterogeneity in cell-surface hydrophobicity and ability to degrade hydrocarbons among cells of two hydrocarbon-degrading bacterial populations. Can J Microbiol 53:252–260

    Article  CAS  PubMed  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2007b) Sequential hydrophobic partitioning of cells of Pseudomonas aeruginosa gives rise to variants of increasing cell-surface hydrophobicity. FEMS Microbiol Lett 270:214–219

    Article  CAS  PubMed  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2008) Comparative hydrocarbon utilization by hydrophobic and hydrophilic variants of Pseudomonas aeruginosa. J Appl Microbiol 105:1876–1887

    Article  CAS  PubMed  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2009) Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int Biodeterior Biodegradation 63:273–279

    Article  CAS  Google Scholar 

  • Olivera NL, Nievas ML, Lozada M, del Prado G, Dionisi HM, Siñeriz F (2009) Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Res Microbiol 160:19–26

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Calvo JJ, Alexander M (1994) Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Appl Environ Microbiol 60:2643–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osswald P, Baveye P, Block JC (1996) Bacterial influence on partitioning rate during the biodegradation of styrene in a biphasic aqueous-organic system. Biodegradation 7:297–302

    Article  CAS  PubMed  Google Scholar 

  • Owsianiak M, Szulc A, Chrzanowski L, Cyplik P, Bogacki M, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Appl Microbiol Biotechnol 84:545–553

    Article  CAS  PubMed  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  CAS  PubMed  Google Scholar 

  • Pijanowska A, Kaczorek E, Chrzanowski Å, Olszanowski A (2007) Cell hydrophobicity of Pseudomonas spp. and Bacillus spp. bacteria and hydrocarbon biodegradation in the presence of Quillaya saponin. World J Microbiol Biotechnol 23:677–682

    Article  CAS  Google Scholar 

  • Power L, Itier S, Hawton M, Schraft H (2007) Time lapse confocal microscopy studies of bacterial adhesion to self-assembled monolayers and confirmation of a novel approach to the thermodynamic model. Langmuir 23:5622–5629

    Article  CAS  PubMed  Google Scholar 

  • Reid G, Cuperus PL, Bruce AW, van der Mei HC, Tomeczek L, Khoury AH, Busscher HJ (1992) Comparison of contact angles and adhesion to hexadecane of urogenital, dairy, and poultry lactobacilli: effect of serial culture passages. Appl Environ Microbiol 58:1549–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robleto EA, Lopez-Hernandez I, Silby MW, Levy SB (2003) Genetic analysis of the AdnA regulon in Pseudomonas fluorescens: nonessential role of flagella in adhesion to sand and biofilm formation. J Bacteriol 185:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    Article  CAS  Google Scholar 

  • Rodrigues AC, Wuertz S, Brito AG, Melo LF (2003) Three-dimensional distribution of GFP-labeled Pseudomonas putida during biofilm formation on solid PAHs assessed by confocal laser scanning microscopy. Water Sci Technol 47:139–142

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AC, Wuertz S, Brito AG, Melo LF (2005) Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects. Biotechnol Bioeng 90:281–289

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M (1981) Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42:375–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg M (1984) Ammonium sulphate enhances adherence of Escherichia coli J-5 to hydrocarbon and polystyrene. FEMS Microbiol Lett 25:41–45

    Article  CAS  Google Scholar 

  • Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Kjelleberg S (1986) Hydrophobic interactions—role in bacterial adhesion. Adv Microb Ecol 9:353–393

    Article  CAS  Google Scholar 

  • Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Rosenberg M, Bayer EA, Delarea L, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44:929–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo Y, Bishop PL (2007) Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation. Environ Sci Technol 41:7107–7113

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Ward OP (2004) Biotechnology and bioremediation—an overview. In: Singh A, Ward OP (eds) Biodegradation and bioremediation. Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  CAS  PubMed  Google Scholar 

  • Skvarla J (1993) A physicochemical model of microbial adhesion. J Chem Soc Faraday Trans 89:2913–2921

    Article  CAS  Google Scholar 

  • Song RH, Hua ZZ, Li HZ, Chen J (2006) Biodegradation of petroleum hydrocarbons by two Pseudomonas aeruginosa strains with different uptake modes. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:733–748

    Article  CAS  PubMed  Google Scholar 

  • Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavana H, Neumann AW (2007) Recent progress in the determination of solid surface tensions from contact angles. Adv Colloid Interface Sci 132:1–32

    Article  CAS  PubMed  Google Scholar 

  • Tobe T, Sasakawa C (2002) Species-specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle-forming pili. Cell Microbiol 4:29–42

    Article  CAS  PubMed  Google Scholar 

  • Vacheethasanee K, Temenoff JS, Higashi JM, Gary A, Anderson JM, Bayston R, Marchant RE (1998) Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J Biomed Mater Res 42:425–432

    Article  CAS  PubMed  Google Scholar 

  • van der Mei HC, Meijer S, Busscher HJ (1998) Eletrophoretic mobilities of protein-coated hexadecane droplets at different pH. J Colloid Interface Sci 205:185–190

    Article  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects—part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  CAS  PubMed  Google Scholar 

  • van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Mol Biol Rev 54:75–87

    Google Scholar 

  • van Merode AEJ, van der Mei HC, Busscher HJ, Krom BP (2006) Influence of culture heterogeneity in cell surface charge on adhesion and biofilm formation by Enterococcus faecalis. J Bacteriol 188:2421–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Oss CJ, Gillman CF, Neumann AW (1975) Phagocytic engulfment and cell adhesiveness as cellular surface phenomena. M. Dekker, New York

  • Vaysse PF, Sivadon P, Goulas P, Grimaud R (2011) Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with higher ability to reinitiate biofilm development at the hexadecane–water interface. Environ Microbiol 13:737–746

    Article  CAS  PubMed  Google Scholar 

  • Warne Zoueki C, Tufenkji N, Ghoshal S (2010a) A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets. J Colloid Interface Sci 344:492–496

    Article  CAS  Google Scholar 

  • Warne Zoueki C, Ghoshal S, Tufenkji N (2010b) Bacterial adhesion to hydrocarbons: role of asphaltenes and resins. Colloids Surf B Biointerfaces 79:219–226

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Tanji Y, Unno H, Hori K (2008) Rapid conversion of toluene by an Acinetobacter sp. Tol 5 mutant showing monolayer adsorption to water:oil interface. J Biosci Bioeng 106:226–230

    Article  CAS  PubMed  Google Scholar 

  • Weisz PB (1973) Diffusion and chemical transformation: an interdisciplinary excursion. Science 179:433–440

    Article  CAS  PubMed  Google Scholar 

  • Westgate S, Bell G, Halling PJ (1995) Kinetics of uptake of organic liquid substrates by microbial cells: a method to distinguish interfacial contact and mass-transfer mechanisms. Biotechnol Lett 17:1013–1018

    Article  CAS  Google Scholar 

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, de Munain RA, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

    Article  CAS  PubMed  Google Scholar 

  • Wodzinski RS, Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl Environ Microbiol 27:1081–1084

    Article  CAS  Google Scholar 

  • Wright CJ, Armstrong I (2006) The application of atomic force microscopy force measurements to the characterisation of microbial surfaces. Surf Interface Anal 38:1419–1428

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  PubMed  Google Scholar 

  • Yoshida F, Yamane T, Yagi H (1971) Mechanism of uptake of liquid hydrocarbons by microorganisms. Biotechnol Bioeng 13:215–228

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang F, Yang X, Gu C, Kengara FO, Hong Q, Lv Z, Jiang X (2011) Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation. Appl Microbiol Biotechnol 90:1063–1071

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. Foght.

Additional information

This review is dedicated to the memory of our colleague Dr. Hassan Abbasnezhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasnezhad, H., Gray, M. & Foght, J.M. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92, 653–675 (2011). https://doi.org/10.1007/s00253-011-3589-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3589-4

Keywords

Navigation