Skip to main content
Log in

Physical methods for characterization of microbial cell surfaces

  • Multi-Author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

There are different concepts for explaining the adsorption of microorganisms to solid surfaces: the DLVO theory and the surface free energy. Basic aspects of both theories are discussed. Established methods for determining the surface properties of microbial cells are reviewed: Electrophoretic mobility, colloid titration, electrostatic interaction chromatography, bacterial adherence to hydrocarbons, partitioning in an aqueous two-phase system, hydrophobic interaction chromatography, contact angle measurement and X-ray photoelectron spectroscopy. They are discussed and classified according to their potential for the correlation of cell surface characteristics and adsorption behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, A., Rutter, P. R., and Berkeley, R. C. W., The influence of ionic strength, pH and a protein layer on the interaction betweenStreptococcus mutans and glass surfaces. J. gen. Microbiol.129 (1983) 439–445.

    CAS  PubMed  Google Scholar 

  2. Absolom, D. R., van Oss, C. J., Genco, R. J., Francis, D. W., and Neumann, A. W., Surface thermodynamics of normal and pathological human granulocytes. Cell Biophys.2 (1980) 113–126.

    Article  CAS  PubMed  Google Scholar 

  3. Absolom, D. R., Zingg, W., Thomson, C., Policova, Z., van Oss, C. J., and Neumann, A. W., Erythrocyte adhesion to polymer surfaces. J. Colloid Interface Sci.104 (1985) 51–59.

    Article  CAS  Google Scholar 

  4. Absolom, D. R., Neumann, A. W., Zingg, W., and van Oss, C. J., Thermodynamic studies of cellular adhesion. Trans. Am. Soc. artif. intern. Organs25 (1979) 152–156.

    Article  CAS  PubMed  Google Scholar 

  5. Adamson, A. W. (Ed.), Physical Chemistry of Surfaces. Interscience Publishers, John Wiley & Sons, New York 1960.

    Google Scholar 

  6. Amory, D. E., Mozes, N., Hermesse, M. P., Leonard, A. J., and Rouxhet, P. G., Chemical analysis of the surface of microorganisms by x-ray photoelectron spectroscopy. FEMS Microbiol. Lett.49 (1988) 107–110.

    Article  Google Scholar 

  7. Amory, D. E., and Rouxhet, P. G., Surface properties ofSaccharomyces cerevisiae andSaccharomyces carlsbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim. biophys. Acta938 (1988) 61–70.

    Article  CAS  Google Scholar 

  8. Andrade, J. D. (Ed.), X-ray photoelectron spectroscopy (XPS), in: Surface and Interfacial Aspects of Biomedical Polymers, vol. 1, p. 105–179. Plenum Press, New York, London 1983.

    Google Scholar 

  9. Andrade, J. D., Smith, L. M., and Gregonis, D. E., The contact angle and interface energetics, in: Surface and Interfacial Aspects of Biomedical Polymers, vol. 1, p. 249–292. Ed. J. D. Andrade. Plenum Press, New York, London 1983.

    Google Scholar 

  10. Barclay, L., Harrington, A., and Ottewill, R. H., The measurement of forces between particles in disperse systems. Kolloid-Z. and Z. Polymere250 (1972) 655–666.

    Article  CAS  Google Scholar 

  11. Brinton, C. C. Jr., Buzzell, A., Lauffer, M. A., Electrophoresis and phage susceptibility studies on a filament-producing variant of theE. coli B bacterium. Biochim. biophys. Acta15 (1954) 533–542.

    Article  PubMed  Google Scholar 

  12. Brinton, C. C. Jr, and Lauffer, M. A., The electrophoresis of viruses, bacteria, and cells, and the microscope method of electrophoresis, in: Electrophoresis, Theory, Methods, and Applications, chap. 10, p. 427–492. Ed. M. Bier. Academic Press Inc., Publishers New York 1959.

    Google Scholar 

  13. Büchs, J., Mozes, N., Wandrey, C., and Rouxhet, P. G., Cell adsorption control by culture conditions, Influence of phosphate on surface properties, flocculation and adsorption behaviour ofCorynebacterium glutamicum. Appl. Microbiol. Biotech.29 (1988) 119–128.

    Article  Google Scholar 

  14. Büchs, J., and Wandrey, C., Oberflächenmodifiziertes Sinterglas-ein geeigneter Träger für aerobe Mikroorganismen. Verfahrenstechnische Aspekte der Immobilisierung von Enzymen und ganzen Zellen, GVC VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, 9.-10.5.88, Heidelberg 1988.

  15. Busscher, H. J., van Pelt, A. W. J., de Jong, H. P., and Arends, J., Effect of spereading pressure on surface free energy determination by means of contact angle measurements. J. Colloid Interface Sci.95 (1983) 23–27.

    Article  CAS  Google Scholar 

  16. Busscher, H. J., Weerkamp, A. H., van der Mei, H. C., van Pelt, A. W. J., de Jong, H. P., and Arends, J., Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. envir. Microbiol.48 (1984) 980–983.

    Article  CAS  Google Scholar 

  17. Busscher, H. J., Uyen, M. H. M. J. C., Weerkamp, A. H., Postma, W. J., and Arends, J., Reversibility of adhesion of oral streptococci to solids. FEMS Microbiol. Lett.35 (1986) 303–306.

    Article  CAS  Google Scholar 

  18. Champluvier, B., Kamp, B., and Rouxhet, P. G., Immobilization of β-galactosidase retained in yeast: adhesion of the cells on a support. Appl. Microbiol. Biotech.27 (1988) 464–469.

    Article  CAS  Google Scholar 

  19. Cunningham, R. K., Söderström, T. O., Gillman, C. F., and van Oss, C. J., Phagocytosis as a surface phenomenon, V. Contact angles and phagocytosis of rough and smooth strains of Salmoneella typhimurium, and the influence of specific antiserum. Immun. Commun.4 (1975) 429–442.

    Article  CAS  Google Scholar 

  20. Curtis, A. S. G. (Ed.), The Cell Surface: Its Molecular Role in Morphogenesis. Logos Press, Academic Press 1967.

  21. Dahlbäck, B., Hermansson, M., Kjelleberg, S., and Norkarans, B., The hydrophobicity of bacteria — an important factor in their initial adhesion at the air-water interface. Archs. Microbiol.128 (1981) 267–270.

    Article  Google Scholar 

  22. Darnell, K. R., Hart, M. E., and Champlin, F. R., Variability of cell surface hydrophobicity amongPasteurella multocida somatic serotype andActinobacillus lignieresii strains. J. clin. Microbiol.25 (1987) 67–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dolowy, K., A physical theory of cell-cell and cell-substratum interactions, in: Cell Adhesion and Mobility, p. 39–63. Eds A. S. G. Curtis and J. D. Pitts. The Third Symposium of the British Society for Cell Biology, Cambridge University Press 1980.

  24. Fattom, A., and Shilo, M., Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. envir. Microbiol.47 (1984) 135–143.

    Article  CAS  Google Scholar 

  25. Fisher, D. J., and Richmond, D. V., The electrokinetic properties of some fungal spores. J. gen. Microbiol.57 (1969) 51–60.

    Article  CAS  Google Scholar 

  26. Gittens, G. J., and James, A. M., Some physical investigations of the behaviour of bacterial surfaces, VI. Chemical modification of surface components. Biochim. biophys. Acta66 (1963) 237–249.

    Article  CAS  PubMed  Google Scholar 

  27. Gerson, D. F., Cell surface energy, contact angles and phase partition, I. Lymphocytic cell lines in biphasic aqueous mixtures. Biochim. biophys. Acta602 (1980) 269–280.

    Article  CAS  PubMed  Google Scholar 

  28. Gerson, D. F., and Scheer, D., Cell surface energy, contact angles and phase partition, III. Adhesion of bacterial cells to hydrophobic surfaces. Biochim. biophys. Acta602 (1980) 506–510.

    Article  CAS  PubMed  Google Scholar 

  29. Good, R. J., Surface free energy of solids and liquids: Thermodynamics, molecular forces, and structure. J. Colloid Interface Sci.59 (1977) 398–419.

    Article  CAS  Google Scholar 

  30. Good, R. J., Contact angles and the surface free energy of solids, in: Surface and Colloid Science, vol. 11, p. 1–29. Eds R. J. Good and R. R. Stromberg. Plenum Press 1979.

  31. Hahn-Hägerdal, B., Hosono, K., Zachrisson, A., and Bornman, C. H., Polyethylene glycol and electric field treatment of plant protoplasts: Characterization of some membrane properties. Physiol. Plant67 (1986) 359–364.

    Article  Google Scholar 

  32. Harden, V. P., and Harris, J. O., The isoelectric point of bacterial cells. J. Bact.65 (1953) 198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hazen, K. C., Plotkin, B. J., and Klimas, D. M., Influence of growth conditions on the cell surface hydrophobicity ofCandida albicans andCandida glabrata, Infect. Immun.54 (1986) 269–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hermansson, M., Kjelleberg, S., Korhonen, T.K., and Stenström, T. A., Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air-water interface. Archs Microbiol.131 (1982) 308–312.

    Article  CAS  Google Scholar 

  35. Hjertén, St., Rosengren, J., and Påhlman, S., Hydrophobic interaction chromatography, The synthesis and the use of some alkyl and aryl derivates of agarose. J. Chromat.101 (1974) 281–288.

    Article  Google Scholar 

  36. Horn, D., Optisches Zweistrahlverfahren zur Bestimmung von Polyelektrolyten in Wasser und zur Messung der Polymeradsorption an Grenzflächen. Progr. Colloid Polymer Sci.65 (1978) 251–264.

    Article  CAS  Google Scholar 

  37. Horn, D., Die Bestimmung der Ladungsdichte organischer Polyelektrolyte. Beitrag zum GDCh-Informationstag Nr. 553/83, Polyelektrolyte — Struktur und Charakterisierung einer wichtigen Stoffklasse der wasserlöslichen Polymere, Mai 83, Frankfurt/Main.

  38. Horn, D., and Heuck, C.-Chr., Charge determination of proteins with polyelectrolyte titration. J. biol. Chem.258 (1983) 1665–1670.

    Article  CAS  PubMed  Google Scholar 

  39. Hubert, M., and Werner, U., Die Oberflächenladung von Mikroorganismen — eine neue neue Messgrösse zur Führung biotechnologischer Prozesse?. vt «Verfahrenstechnik»17 (1983) 19–22.

    CAS  Google Scholar 

  40. James, A. M., The electrochemistry of the bacterial surface. Progr. Biophys. biophys. Chem.8 (1957) 96–142.

    Article  CAS  Google Scholar 

  41. James, A. M., Electrophoresis of particles in suspension, in: Surface and Colloid Science, vol. 11, p. 121–185. Eds R. J. Good and R. R. Stromberg. Plenum Press, 1979.

  42. James, A. M., and List, C. F., Some physical investigations of the behaviour of bacterial surfaces, XII. The effect of fimbriae on the electrophoretic mobility of some capsular and non-capsular bacteria of the coli-aerogenes group. Biochim. biophys. Acta112 (1966) 307–317.

    Article  CAS  PubMed  Google Scholar 

  43. Kaeppeli, O., and Fiechter, A., The mode of interaction between the substrate and cell surface of the hydrocarbon-utilizing yeastCandiada tropicalis. Biotech. Bioeng.18 (1976) 967–974.

    Article  CAS  Google Scholar 

  44. Kjelleberg, S., Lagercrantz, C., and Larsson, Th., Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid. FEMS Microbiol. Lett.7 (1980) 41–44.

    Article  CAS  Google Scholar 

  45. Kjelleberg, S., and Hermansson, M. Starvation-induced effects on bacterial surface characteristics. Appl. envir. Microbiol.48 (1984) 497–503.

    Article  CAS  Google Scholar 

  46. Kosaric, N., Mahoney, E. M., Varangu, L. K., and Cairus, W. L., Cell surface and aggregation studies of microbes from anaerobic systems. Water Poll. Res. J. Canada22 (1987) 289–297.

    CAS  Google Scholar 

  47. Lerche, C., Electrophoresis ofMicrococcus pyogenes aureus. Acta path. microbiol. scand., Suppl. 94–98 (1953) 1–194.

    Google Scholar 

  48. Lyklema, J., Interfacial electrochemistry of surfaces with biomedical relevance, in: Surface and Interfacial Aspects of Biomedical Polymers, vol. 1, p. 293–336. Ed. J. D. Andrade. Plenum Press, 1983.

  49. Marshall, K. C. (Ed.), Interfaces in Microbial Ecology. Harvard University Press, 1976.

  50. Minagi, S., Miyake, Y., Inagaki, K., Tsuru, H., and Suginaka, H., Hydrophobic interaction inCandida albicans andCandida tropicalis adherence to various denture base resin materials. Infect. Immun.47 (1985) 11–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyake, Y., Fujita, Y., Minagi, S., and Suginaka, H., Surface hydrophobicity and adherence ofCandida to acrylic surfaces. Microbios46 (1986) 7–14.

    CAS  PubMed  Google Scholar 

  52. Moyer, L. S., Changes in the electrokinetic potential of bacteria at various phases of the culture cycle. J. Bact.32 (1936) 433–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mozes, N., Marchal, F., Hermesse, M. P., van Haecht, J. L., Reuliaux, L., Léonard, A. J., and Rouxhet, P. G., Immobilization of microorganisms by adhesion: interplay of electrostatic and nonelectrostatic interactions. Biotechn. Bioeng.29 (1987) 439–450.

    Article  Google Scholar 

  54. Mozes, N., and Rouxhet, P. G., Methods for measuring hydrophobicity of microorganisms. J. microbiol. Meth.6 (1987) 99–112.

    Article  Google Scholar 

  55. Neihof, R., and Echols, W. H., Physicochemical studies of microbial cell walls, I. Comparative electrophoretic behavior of intact cells and isolated cell walls. Biochim. biophys. Acta318 (1973) 23–32.

    Article  CAS  PubMed  Google Scholar 

  56. Nesbitt, W. E., Doyle, R. J., and Taylor, K. G., Hydrophobic interactions and the adherence ofStreptococcus sanguis to hydroxylapatite. Infect. Immun.38 (1982) 637–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Neufeld, R. J., Zajic, J. E., and Gerson, D. F., Cell surface measurements in hydrocarbon and carbohydrate fermentations. Appl. envir. Microbiol.39 (1980) 511–517.

    Article  CAS  Google Scholar 

  58. Neumann, A. W., Good, R. J., Hope, C. J., and Sejpal, M., An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci.49 (1974) 291–304.

    Article  CAS  Google Scholar 

  59. Neumann, A. W., Absolom, D. R., van Oss, C. J., and Zingg, W., Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces. Cell Biophys.1 (1979) 79–92.

    Article  CAS  PubMed  Google Scholar 

  60. Neumann, A. W., and Good, R. J., Techniques of measuring contact angles, in: Surface and Colloid Science, vol. 11, p. 31–39. Eds R. J. Good and R. R. stromberg. Plenum Press, 1979.

  61. Neumann, A. W., Absolom, D. R., Francis, D. W., and van Oss, C. J., Conversion tables of contact angles to surface tensions. Separ. Purif. Meth.9 (1980) 69–163.

    Article  CAS  Google Scholar 

  62. Neumann, A. W., Hum, O. S., Francis, D. W., Zingg, W., and van Oss, C. J., Kinetic and thermodynamic aspects of platelet adhesion from suspension to various substrates. J. biomed. Mat. Res.14 (1980) 499–509.

    Article  CAS  Google Scholar 

  63. Noda, Y., Katayama, T., and Kanemasa, Y., Determination of surface charge ofMicrococcus luteus by colloid titration. Physiol. Chem. phys. Med. NMR16 (1984) 29–34.

    CAS  Google Scholar 

  64. Ofek, I., Whitnack, E., and Beachey, E. H., Hydrophobic interactions of group A streptococci with hexadecane droplets. J. Bact.154 (1983) 139–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Overbeek, J. Th. G., and Lijklema, J., Electric potentials in colloid systems, in: Electrophoresis, Theory, Methods, and Applications, p. 1–33. Ed. M. Bier. Academic Press Inc., 1959.

  66. Pedersen, K., Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria. FEMS Microbiol. Lett.12 (1980) 365–367.

    Article  Google Scholar 

  67. Rosenberg, M., Gutnick, D., and Rosenberg, E., Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett.9 (1980) 29–33.

    Article  CAS  Google Scholar 

  68. Rosenberg, M., Perry, A., Bayer, E. A., Gutnick, D. L., Rosenberg, E., and Ofek, I., Adherence ofAcinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane. Infect. Immun.33 (1981) 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rosenberg, M., Judes, H., and Weiss, E., Cell surface hydrophobicity of dental plaque microorganisms in situ. Infect. Immun.42 (1983) 831–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rosenberg, M., Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett.22 (1984) 289–295.

    Article  CAS  Google Scholar 

  71. Rosenberg, M., and Kjelleberg, S., Hydrophobic interactions: Role in bacterial adhesion. Adv. Microbial Ecol.9 (1986) 353–393.

    Article  CAS  Google Scholar 

  72. Rouxhet, P. G., and Mozes, N., Physico-chemical bases of microbial adhesion, in: Anaerobic Digestion: Results of Research and Demonstration Projects, p. 218–229. Eds M. P. Ferranti, G. L. Ferrero and P. L'Hermite. Elsevier Applied Science, 1986.

  73. Rutter, P. R., The physical chemistry of the adhesion of bacteria and other cells, in: Cell Adhesion and Mobility, p. 103–135. Eds A. S. G. Curtis and J. D. Pitts. The Third Symposium of the British Society for Cell Biology, Cambridge University Press 1980.

  74. Schell, H., and Bernhardt, H., Bestimmung der Ladungskonzentration als Steuergrösse des Flockungsmittelzusatzes (Teil I). Z. Wasser-Abwasser-Forsch.19 (1986) 51–59.

    CAS  Google Scholar 

  75. Schürch, S., Gerson, D. F., and McIver, D. J. L., Determination of cell/medium interfacial tensions from contact angles in aqueous polymer systems. Biochim. biophys. Acta640 (1981) 557–571.

    Article  PubMed  Google Scholar 

  76. Smyth, C. J., Jonsson, P., Olsson, E., Söderlind, O., Rosengren, J., Hjertén, S., and Wadström, T., Differences in hydrophobic surface characteristics of porcine enteropathogenicEscherichia coli with or without K 88 antigen as revealed by hydrophobic interaction chromatography. Infect. Immun.22 (1978) 462–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Souto-Padrón, T., and de Souza, W., The surface charge ofTrypanosoma cruzi: Analysis using cell electrophoresis, lectins and ultrastructural cytochemistry. J. submicrosc. Cytol.18 (1986) 701–709.

    PubMed  Google Scholar 

  78. Spelt, J. K., Absolom, D. R., and Neumann, A. W., Solid surface tension: The interpretation of contact angles by the equation of state approach and the theory of surface tension components. Langmuir2 (1986) 620–625.

    Article  CAS  Google Scholar 

  79. Thonart, Ph., Custinne, M., and Paquot, M., Zeta potential of yeast cells: application in cell immobilization. Enzyme microb. Technol.4 (1982) 191–194.

    Article  CAS  Google Scholar 

  80. Van der Mei, H. C., Weerkamp, A. H., and Busscher, H. J., A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces. J. microbiol. Meth.6 (1987) 277–287.

    Article  Google Scholar 

  81. Van Haecht, J. L., Defosse, C., van den Bogaert, B., and Rouxhet, P. G., Surface properties of yeast cells: chemical composition by XPS and isoelectric point. Colloids Surf.4 (1982) 343–358.

    Article  Google Scholar 

  82. Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., The role of bacterial cell wall hydrophobicity in adhesion. Appl. envir. Microbiol.53 (1987) 1893–1897.

    Article  Google Scholar 

  83. Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B., Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. envir. Microbiol.53 (1987) 1898–1901.

    Article  Google Scholar 

  84. Van Pelt, A. W. J., van der Mei, H. C., Busscher, H., Arends, J., and Weerkamp, A. H., Surface free energies of oral streptococci. FEMS Microbiol. Lett.25 (1984) 279–282.

    Article  Google Scholar 

  85. Van Pelt, A. W. J., Weerkamp, A. H., Uyen, M. H. W. J. C., Busscher, H. J., de Jong, H. P., and Arends, J., Adhesion ofStreptococcus sanguis CH 3 to polymers with different surface free energies. Appl. envir. Microbiol.49 (1985) 1270–1275.

    Article  Google Scholar 

  86. Ward, C. A., and Neumann, A. W., On the surface thermodynamics of a two-component liquid-vapor-ideal solid system. J. Colloid Interface Sci.49 (1974) 286–290.

    Article  Google Scholar 

  87. Weiss, L., and Harlos, J. P., Short-term interactions between cell surfaces. Prog. Surf. Sci.1 (1972) 355–405.

    Article  CAS  Google Scholar 

  88. Wu, S., Calculation of interfacal tension in polymer systems. J. Polymer Sci.C 34 (1971) 19–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekeler, C., Ziehr, H. & Klein, J. Physical methods for characterization of microbial cell surfaces. Experientia 45, 1047–1055 (1989). https://doi.org/10.1007/BF01950157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01950157

Key words

Navigation