Skip to main content
Log in

Role of low-concentration monorhamnolipid in cell surface hydrophobicity of Pseudomonas aeruginosa: adsorption or lipopolysaccharide content variation

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A role of rhamnolipid biosurfactant to enhance the biodegradation of hydrocarbons is known to be enhancing bacterial cell surface hydrophobicity (CSH) and adhesion of cells to hydrocarbons. Assumptions regarding the mechanism for rhamnolipid in changing CSH of Gram-negative bacteria are rhamnolipid-induced release of lipopolysaccharide (LPS) from the cell’s outer membrane and adsorption/orientation of rhamnolipid on the cell surface. In this study, the relation between cell-wall LPS or rhamnolipid content and CSH of a Pseudomonas aeruginosa bacterium subjected to rhamnolipid treatment was investigated to add insights to the mechanism. Results showed that the initial CSH was determined by the type of substrate the cells grow on and the stage of growth. For glucose-grown cells with low initial CSH and high LPS content, rhamnolipid sorption in cell wall had no discernable effect on CSH. For cells grown on glycerol with medium initial CSH and low LPS content, rhamnolipid sorption increased CSH of exponential-phase cells but decreased that of stationary-phase cells. For hexadecane-grown cells with high initial CSH and high LPS content, rhamnolipid sorption decreased CSH of both exponential-phase and stationary-phase cells. The results indicated that CSH has a better correlation to the content of rhamnolipid in the cell wall than to the content of LPS in the presence of rhamnolipid treatment and that rhamnolipid adsorption may be an important mechanism for rhamnolipid to alter CSH of P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92(4):653–675

    Article  CAS  PubMed  Google Scholar 

  • Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66(8):3262–3268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Zhu H (2005) lux-marked Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid. Colloid Surf B 41(1):43–48

    Article  Google Scholar 

  • Feng W, Swift S, Singhal N (2013) Effects of surfactants on cell surface tension parameters and hydrophobicity of Pseudomonas putida 852 and Rhodococcus erythropolis 3586. Colloid Surf B 105:43–50

    Article  CAS  Google Scholar 

  • Fu HY, Zeng GM, Zhong H, Yuan XZ, Wang W, Huang GH, Li JB (2007) Effects of rhamnolipid on degradation of granular organic substrate from kitchen waste by a Pseudomonas aeruginosa strain. Colloid Surf B 58(2):91–97

  • Górna H, Ławniczak Ł, Zgoła-Grześkowiak A, Kaczorek E (2011) Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresour Technol 102(3):3028–3033

    Article  PubMed  Google Scholar 

  • Gray G, Wilkinson S (1965) The effect of ethylenediaminetetra-acetic acid on the cell walls of some gram-negative bacteria. J Gen Microbiol 39(3):385–399

    Article  CAS  PubMed  Google Scholar 

  • Zeng GM, Zhong H, Huang GH, Fu HY (2005) Physicochemical and microbiological effects of biosurfactant on the remediation of HOC-contaminated soil. Prog Nat Sci 15(7):577–585

  • Hancock R, Nikaido H (1978) Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of the permeability barrier. J Bacteriol 136(1):381–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazen K, Plotkin B, Klimas D (1986) Influence of growth conditions on cell surface hydrophobicity of Candida albicans and Candida glabrata. Infect Immun 54(1):269–271

  • Inzana T, Pichichero M (1984) Lipopolysaccharide subtypes of Haemophilus influenzae type b from an outbreak of invasive disease. J Clin Microbiol 20(2):145–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaczorek E, Chrzanowski Ł, Pijanowska A, Olszanowski A (2008) Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins. Bioresour Technol 99(10):4285–4291

    Article  CAS  PubMed  Google Scholar 

  • Liu XL, Zeng GM, Tang L, Zhong H, Wang RY, Fu HY, Liu ZF, Huang HL, Zhang JC (2008) Effects of dirhamnolipid and SDS on enzyme production from Phanerochaete chrysosporium in submerged fermentation. Process Biochem 43(11):1300–1303

  • Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH (2004) The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol 110(3):251–256

  • Liu Y, Yang SF, Liu QS, Tay JH (2003) The role of cell hydrophobicity in the formation of aerobic granules. Curr Microbiol 46(4):0270–0274

  • Masuoka J, Hazen KC (1997) Cell wall protein mannosylation determines Candida albicans cell surface hydrophobibity. Microbiology 143(9):3015–3021

  • Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864(2):211–220

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H (1976) Outer membrane of Salmonella typhimurium: transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433(1):118–132

    Article  CAS  PubMed  Google Scholar 

  • Norman RS, Frontera-Suau R, Morris PJ (2002) Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Appl Environ Microbiol 68(10):5096–5103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2009) Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int Biodeterior Biodegrad 63(3):273–279

    Article  CAS  Google Scholar 

  • Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloids Interf Sci 110(3):75–95

    Article  CAS  Google Scholar 

  • Park KM, So JS (2000) Altered cell surface hydrophobicity of lipopolysaccharide-deficient mutant of Bradyrhizobium japonicum. J Microbiol Methods 41(3):219–226

  • Prabhu Y, Phale P (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61(4):342–351

    Article  CAS  PubMed  Google Scholar 

  • Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164(3):297–303

    Article  CAS  PubMed  Google Scholar 

  • Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468:1014–1027

  • van Loosdrecht M, Lyklema J, Norde W, Schraa G, Zehnder A (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53(8):1893–1897

    PubMed Central  PubMed  Google Scholar 

  • Warren RAJ, Ells AF, Campbell J (1960) Endogenous respiration of Pseudomonas aeruginosa. J Bacteriol 79(6):875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg J, Ribi E, Wheat R (1983) Enhancement of macrophage-mediated tumor cell killing by bacterial outer membrane proteins (porins). Infect Immun 42(1):219–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  PubMed  Google Scholar 

  • Yokota S-i, Fujii N (2007) Contributions of the lipopolysaccharide outer core oligosaccharide region on the cell surface properties of Pseudomonas aeruginosa. Comp Immunol Microbiol 30(2):97–109

    Article  Google Scholar 

  • Yuan X, Ren F, Zeng G, Zhong H, Fu H, Liu J, Xu X (2007) Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property. Appl Microbiol Biotechnol 76(5):1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Chen M, Zeng Z (2013a) Risks of neonicotinoid pesticides. Science 340(6139):1403–1403

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Chen M, Zeng Z (2013b) Shale gas: surface water also at risk. Nature 499(7457):154–154

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Liu Z, Zhong H, Li J, Yuan X, Fu H, Ding Y, Wang J, Zhou M (2011) Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Appl Microbiol Biotechnol 90(3):1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Jia L, Wang S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010) Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol 101(10):3423–3429

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58(10):3276–3282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60(6):2101–2106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong H, Ming Zeng G, Yuan XZ, Yan Fu H, Huang GH, Ren FY (2007) Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 77(2):447–455

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Zeng GM, Liu JX, Xu XM, Yuan XZ, Fu HY, Huang GH, Liu ZF, Ding Y (2008) Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 79(4):671–677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the National Natural Science Foundation of China (51378190, 51039001, 50908081, 51378192, 51009063, 51308200), the Environmental Protection Technology Research Program of Hunan (2007185), the Hunan Provincial Innovation Foundation for Postgraduate (CX2009B078), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Zeng or Hua Zhong.

Additional information

Xiaoling Ma has the same contribution as the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ma, X., Zeng, G. et al. Role of low-concentration monorhamnolipid in cell surface hydrophobicity of Pseudomonas aeruginosa: adsorption or lipopolysaccharide content variation. Appl Microbiol Biotechnol 98, 10231–10241 (2014). https://doi.org/10.1007/s00253-014-5957-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5957-3

Keywords

Navigation