Skip to main content

Advertisement

Log in

Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As the microbial fuel cell (MFC) technology is getting nearer to practical applications such as wastewater treatment, it is crucial to consider the different aspects that will make this technology viable in the future. In this paper, we provide information about the specifications of an energy self-sufficient MFC system as a basis to extrapolate on the potential benefits and limits of a future MFC-based wastewater treatment plant. We particularly emphasize on the importance of two crucial parameters that characterize an MFC: its electromotive force (E emf) and its internal resistance (R int). A numerical projection using state-of-art values (E emf = 0.8 V and R int = 5 Ω) emphasized on the difficulty at this moment to reach self-sufficiency using a reasonable number of MFCs at the laboratory scale. We found that a realistic number of MFCs to provide enough voltage (=5 V) at a sufficient current (=0.8 A) to power a pump requiring 4 W would be of 13 MFCs in series and 10 stacks of MFCs in parallel, resulting in a total number of 130 MFCs. That would result in a treatment capacity of 144 L of domestic wastewater (0.5 g-COD L−1) per day. The total MFC system would be characterized by an internal resistance of 6.5 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394

    Article  CAS  Google Scholar 

  • Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101(2):469–475. doi:10.1016/j.biortech.2009.07.039

    Article  CAS  Google Scholar 

  • Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in pem fuel cell by seawater biofilm. Electrochem Commun 7(9):900–904

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans. Appl Environ Microbiol 71(4):2186–2189

    Article  CAS  Google Scholar 

  • Cao XX, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152. doi:10.1021/es901950j

    Article  CAS  Google Scholar 

  • Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19(6):607–613

    Article  CAS  Google Scholar 

  • Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a bod sensor using respiratory inhibitors. Biosens Bioelectron 20(9):1856–1859

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2007a) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104(47):18871–18873

    Article  CAS  Google Scholar 

  • Cheng SA, Logan BE (2007b) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9(3):492–496

    Article  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006a) Increased power generation in a continuous flow mfc with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40(7):2426–2432

    Article  CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006b) Power densities using different cathode catalysts (pt and cotmpp) and polymer binders (nafion and ptfe) in single chamber microbial fuel cells. Environ Sci Technol 40(1):364–369

    Article  CAS  Google Scholar 

  • Cheng SA, Xing DF, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958. doi:10.1021/es803531g

    Article  CAS  Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901–913. doi:10.1007/s00253-008-1522-2

    Article  CAS  Google Scholar 

  • Clauwaert P, Mulenga S, Aelterman P, Verstraete W (2009) Litre-scale microbial fuel cells operated in a complete loop. Appl Microbiol Biotechnol 83(2):241–247. doi:10.1007/s00253-009-1876-0

    Article  CAS  Google Scholar 

  • Deng Q, Li XY, Zuo JE, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195(4):1130–1135. doi:10.1016/j.jpowsour.2009.08.092

    Article  CAS  Google Scholar 

  • Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  CAS  Google Scholar 

  • Fan YZ, Hu HQ, Liu H (2007) Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354

    Article  CAS  Google Scholar 

  • Fan YZ, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42(21):8101–8107. doi:10.1021/es801229j

    Article  CAS  Google Scholar 

  • Feng YJ, Lee H, Wang X, Liu YL, He WH (2010) Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell. Bioresour Technol 101(2):632–638. doi:10.1016/j.biortech.2009.08.046

    Article  CAS  Google Scholar 

  • Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2009) Ion exchange membrane influence on ohmic resistance. Paper presented at the The 2nd Microbial Fuel Cell Conference, Gwangju

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53(2):598–603

    Article  CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan ZG, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42(6–7):1387–1396. doi:10.1016/j.watres.2007.10.007

    Article  CAS  Google Scholar 

  • Fricke K, Harnisch F, Schroder U (2008) On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ Sci 1(1):144–147. doi:10.1039/b802363h

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain mr-1 and other microorganisms. Proc Natl Acad Sci USA 103(30):11358–11363

    Article  CAS  Google Scholar 

  • Harnisch F, Wirth S, Schroder U (2009) Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron(II) phthalocyanine based electrodes. Electrochem Commun 11(11):2253–2256. doi:10.1016/j.elecom.2009.10.002

    Article  CAS  Google Scholar 

  • He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267

    Article  CAS  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C (2008) Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32(13):1228–1240. doi:10.1002/er.1419

    Article  CAS  Google Scholar 

  • Jiang JQ, Zhao QL, Zhang JN, Zhang GD, Lee DJ (2009) Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol 100(23):5808–5812. doi:10.1016/j.biortech.2009.06.076

    Article  CAS  Google Scholar 

  • Kelly I (2003) The design of a robotic predator: the slugbot. Robotica 21:399–406

    Article  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, shewanella putrefaciens. J Microbiol Biotechnol 9(2):127–131

    Google Scholar 

  • Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel bod (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25(7):541–545

    Article  CAS  Google Scholar 

  • Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ (2009) Development of a tubular microbial fuel cell (mfc) employing a membrane electrode assembly cathode. J Power Sources 187(2):393–399. doi:10.1016/j.jpowsour.2008.11.020

    Article  CAS  Google Scholar 

  • Lefebvre O, Al-Mamun A, Ooi WK, Tang Z, Chua DHC, Ng HY (2008) An insight into cathode options for microbial fuel cells. Water Sci Technol 57(12):2031–2037

    Article  CAS  Google Scholar 

  • Lefebvre O, Ooi WK, Tang Z, Abdullah-Al-Mamun M, Chua DHC, Ng HY (2009) Optimization of a pt-free cathode suitable for practical applications of microbial fuel cells. Bioresour Technol 100(20):4907–4910. doi:10.1016/j.biortech.2009.04.061

    Article  CAS  Google Scholar 

  • Lefebvre O, Nguyen TTH, Abdullah-Al-Mamun M, Chang IS, Ng HY (2010) T-RFLP reveals high β-proteobacteria diversity in microbial fuel cells enriched with domestic wastewater. J Appl Microbiol 109(3):839–850. doi:10.1111/j.1365-2672.2010.04735.x

    Google Scholar 

  • Lettinga G, Deman A, Vanderlast ARM, Wiegant W, Vanknippenberg K, Frijns J, Vanbuuren JCL (1993) Anaerobic treatment of domestic sewage and waste-water. Water Sci Technol 27(9):67–73

    CAS  Google Scholar 

  • Li ZJ, Zhang XW, Zeng YX, Lei LC (2009) Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresour Technol 100(9):2551–2555. doi:10.1016/j.biortech.2008.12.018

    Article  CAS  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046

    Article  CAS  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285

    Article  CAS  Google Scholar 

  • Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52(1–2):31–37

    CAS  Google Scholar 

  • Logan B (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671. doi:10.1007/s00253-009-2378-9

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  • Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346

    Article  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels T, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640. doi:10.1021/es801553z

    Article  CAS  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571. doi:10.1016/j.copbio.2008.10.005

    Article  CAS  Google Scholar 

  • Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182

    Article  CAS  Google Scholar 

  • Melhuish C, Ieropoulos I, Greenman J, Horsfield I (2006) Energetically autonomous robots: food for thought. Auton Robot 21(3):187–198

    Article  Google Scholar 

  • Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814

    Article  CAS  Google Scholar 

  • Moon H, Chang IS, Kang KH, Jang JK, Kim BH (2004) Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (bod) sensor. Biotechnol Lett 26(22):1717–1721

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by geobacter metallireducens. Appl Environ Microbiol 66(5):2248–2251

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002a) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by geothrix fermentans. Appl Environ Microbiol 68(5):2294–2299. doi:10.1128/aem.68.5.2294-2299.2002|issn0099-2240

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002b) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19(2):141–159

    Article  CAS  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405(6782):94–97

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355

    Article  CAS  Google Scholar 

  • Pham TH, Jang JK, Moon HS, Chang IS, Kim BH (2005) Improved performance of microbial fuel cell using membrane-electrode assembly. J Microbiol Biotechnol 15(2):438–441

    CAS  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292

    Article  CAS  Google Scholar 

  • Qian F, Baum M, Gu Q, Morse DE (2009) A 1.5 mu l microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9(21):3076–3081. doi:10.1039/b910586g

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  CAS  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3408

    Article  CAS  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    Article  CAS  Google Scholar 

  • Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1(1):9–18

    Article  CAS  Google Scholar 

  • Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2(5):519–527. doi:10.1038/ismej.2008.1

    Article  CAS  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35(1):192–195

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis dsp10. Environ Sci Technol 40(8):2629–2634

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31(12):1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459. doi:10.1016/j.tibtech.2008.04.008

    Article  CAS  Google Scholar 

  • Schaetzle O, Barriere F, Schroder U (2009) An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy Environ Sci 2(1):96–99. doi:10.1039/b815331k

    Article  CAS  Google Scholar 

  • Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K (2008) Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 80(2):325–330. doi:10.1007/s00253-008-1516-0

    Article  CAS  Google Scholar 

  • Sun J, Hu YY, Bi Z, Cao YQ (2009) Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 187(2):471–479. doi:10.1016/j.jpowsour.2008.11.022

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw Hill, New York

    Google Scholar 

  • Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20(8):821–825. doi:10.1038/nbt716|ISSN1087-0156

    CAS  Google Scholar 

  • Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179(2):571–575. doi:10.1016/j.jpowsour.2007.12.123

    Article  CAS  Google Scholar 

  • Wang B, Han JI (2009) A single chamber stackable microbial fuel cell with air cathode. Biotechnol Lett 31(3):387–393. doi:10.1007/s10529-008-9877-0

    Article  CAS  Google Scholar 

  • Wang YF, Tsujimura S, Cheng SS, Kano K (2007) Self-excreted mediator from escherichia coli k-12 for electron transfer to carbon electrodes. Appl Microbiol Biotechnol 76(6):1439–1446

    Article  CAS  Google Scholar 

  • Wang X, Cheng SA, Feng YJ, Merrill MD, Saito T, Logan BE (2009) Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43(17):6870–6874. doi:10.1021/es900997w

    Article  CAS  Google Scholar 

  • Wilkinson S (2000) “Gastrobots”—benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robot 9(2):99–111

    Article  Google Scholar 

  • Wilkinson S, Klar J, Applegarth S (2006) Optimizing biofuel cell performance using a targeted mixed mediator combination. Electroanalysis 18(19–20):2001–2007

    Article  CAS  Google Scholar 

  • Zhang BG, Zhao HZ, Zhou SG, Shi CH, Wang C, Ni JR (2009) A novel uasb-mfc-baf integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100(23):5687–5693. doi:10.1016/j.biortech.2009.06.045

    Article  CAS  Google Scholar 

  • Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and cotmpp based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7(12):1405–1410

    Article  CAS  Google Scholar 

  • Zhuang L, Zhou SG, Wang YQ, Liu CS, Geng S (2009) Membrane-less cloth cathode assembly (cca) for scalable microbial fuel cells. Biosens Bioelectron 24(12):3652–3656. doi:10.1016/j.bios.2009.05.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a grant from the Environment & Water and Industry Development Council, Singapore (MEWR 651/06/159) and partly from a grant from the Korea Science and Engineering Foundation (KOSEF) NRL Program (R0A-2008-000-20088-0) by the Korean government (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to How Yong Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefebvre, O., Uzabiaga, A., Chang, I.S. et al. Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration. Appl Microbiol Biotechnol 89, 259–270 (2011). https://doi.org/10.1007/s00253-010-2881-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2881-z

Keywords

Navigation