Skip to main content

Advertisement

Log in

Fatty acid alkyl esters: perspectives for production of alternative biofuels

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The global economy heads for a severe energy crisis: whereas the energy demand is going to rise, easily accessible sources of crude oil are expected to be depleted in only 10–20 years. Since a serious decline of oil supply and an associated collapse of the economy might be reality very soon, alternative energies and also biofuels that replace fossil fuels must be established. In addition, these alternatives should not further impair the environment and climate. About 90% of the biofuel market is currently captured by bioethanol and biodiesel. Biodiesel is composed of fatty acid alkyl esters (FAAE) and can be synthesized by chemical, enzymatic, or in vivo catalysis mainly from renewable resources. Biodiesel is already established as it is compatible with the existing fuel infrastructure, non-toxic, and has superior combustion characteristics than fossil diesel; and in 2008, the global production was 12.2 million tons. The biotechnological production of FAAE from low cost and abundant feedstocks like biomass will enable an appreciable substitution of petroleum diesel. To overcome high costs for immobilized enzymes, the in vivo synthesis of FAAE using bacteria represents a promising approach. This article points to the potential of different FAAE as alternative biofuels, e.g., by comparing their fuel properties. In addition to conventional production processes, this review presents natural and genetically engineered biological systems capable of in vivo FAAE synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abigor RD, Uadia PO, Foglia TA, Haas MJ, Jones KC, Okpefa E, Obibuzor JU, Bafor ME (2000) Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils. Biochem Soc Trans 28:979–981

    CAS  Google Scholar 

  • Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:808–813

    Google Scholar 

  • Akoh C, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005

    CAS  Google Scholar 

  • Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels, Bioprod Biorefin 1:57–66

    CAS  Google Scholar 

  • Albuquerque MCG, Cavalcante CL, Torres AEB, Azevedo DCS, Parente EJS (2009) Transesterification of castor oil using ethanol: effect of water removal by adsorption onto Zeolite 3A. Energy Fuels 23:1136–1138

    CAS  Google Scholar 

  • Alhomsi K, Selig M, Sustic T, Katrangi E, Weissig V, Laposata M (2008) Induction of apoptosis and necrosis in human peripheral blood mononuclear cells by fatty acid ethyl esters. Alcohol Clin Exp Res 32:534–543

    CAS  Google Scholar 

  • Ali Y, Hanna MA (1994) Alternative diesel fuels from vegetable oils. Bioresour Technol 50:153–163

    CAS  Google Scholar 

  • Altiparmak D, Keskin A, Koca A, Gürü M (2006) Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends. Bioresour Technol 98:241–246

    Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    CAS  Google Scholar 

  • Antczak MS, Kubiak A, Antczak T, Bielecki S (2009) Enzymatic biodiesel synthesis—key factors affecting efficiency of the process. Renewable Energy 34:1185–1194

    Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    CAS  Google Scholar 

  • Armenta RE, Vinatoru M, Burja AM, Kralovec JA, Barrow CJ (2007) Transesterification of fish oil to produce fatty acid ethyl esters using ultrasonic energy. J Am Oil Chem Soc 84:1045–1052

    CAS  Google Scholar 

  • Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    CAS  Google Scholar 

  • Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43

    CAS  Google Scholar 

  • Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B Enzyme 17:157–165

    CAS  Google Scholar 

  • Best CA, Laposata M (2003) Fatty acid ethyl esters: toxic non-oxidative metabolites of ethanol and markers of ethanol intake. Front Biosci 8:202–217

    Google Scholar 

  • Bommarius AS, Riebel-Bommarius BR (2000) Biocatalysts: fundamentals and applications. John Wiley & Sons, New York 266

    Google Scholar 

  • Bradshaw GB, Meuly WC (1944) Preparation of detergents. US Patent 2:360–844

    Google Scholar 

  • Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 5:579–583

    CAS  Google Scholar 

  • Bröker D, Elbahloul Y, Steinbüchel A (2009) Production of lipids for biofuels using bacteria. In: Ratledge C (ed) Monograph on single cell oils, AOCS Press, Urbana: USA, pp 67–90 (in press)

  • Brown JB (1938) The structure and chemical composition of fats and oils. J Am Oil Chem Soc 15:102–106

    CAS  Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbial Biotech 35:431–441

    CAS  Google Scholar 

  • Canakci M, van Gerpen J (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210

    CAS  Google Scholar 

  • Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8

    CAS  Google Scholar 

  • Clark SJ, Wagner L, Schrock MD, Piennaar PG (1984) Methyl and ethyl soybean esters as renewable fuels for diesel engines. J Am Oil Chem Soc 61:1632–1637

    CAS  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    CAS  Google Scholar 

  • Dai C, Tao J, Zhao M, Jiang B (2007) Energetic efficiency and environmental, economic, societal benefits of microdiesel from biowastes. Energy Explor Exploit 25:210–226

    Article  Google Scholar 

  • de Oliveira D, Do Nascimento Filho I, Di Luccio M, Faccio C, Dalla Rosa C, Bender JP, Lipke N, Amroginski C, Dariva C, de Oliveira JV (2005) Kinetics of enzyme-catalyzed alcoholysis of soybean oil in n-hexane. Appl Biochem Biotechnol 121:231–241

    Google Scholar 

  • Del Cardayre S, Cockrem M, Charles M (2009) Systems and methods for the production of fatty esters. International patent WO2009009391. 15 Jan 2009

  • Demirbas A (2003) Chemical and fuel properties of seventeen vegetable oils. Energy Sources 25:721–728

    CAS  Google Scholar 

  • Diczfalusy MA, Björkhem I, Einarsson C, Hillebrant CG, Alexson SEH (2001) Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids in humans. J Lipid Res 42:1025–1032

    CAS  Google Scholar 

  • Diesel R (1913) Die Entstehung des Dieselmotors. Verlag Julius Springer, Berlin

    Google Scholar 

  • Du Plessis LM, de Villiers JBM, van der Walt WH (1985) Stability studies on methyl and ethyl fatty acid esters of sunflowerseed oil. J Am Oil Chem Soc 62:748–752

    Google Scholar 

  • Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzyme 30:125–129

    CAS  Google Scholar 

  • Du W, Liu DH, Li LL, Dai LM (2007) Mechanism exploration during lipase-mediated methanolysis of renewable oils for biodiesel production in a tert-butanol system. Biotechnol Prog 23:1087–1090

    CAS  Google Scholar 

  • Du W, Li W, Sun T, Chen X, Liu C (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79:331–337

    CAS  Google Scholar 

  • Emerging Markets Online (2008) Biodiesel 2020: a global market survey, 2nd edition. http://www.emerging-markets.com/biodiesel/default.asp

  • Encinar JM, Gonzáles JF, Rodríguez-Reinares A (2007) Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Process Technol 88:513–522

    CAS  Google Scholar 

  • EPA 420-P-02-001, www.epa.gov/oms/models/analysis/biodsl/p02001.pdf

  • European Biodiesel Board (2009) http://www.ebb-eu.org/stats.php

  • EurOpserv'ER (2008) Biogas barometer. In: Systèmes solaires, le journal des energies renouvelables 186: 45–59, http://www.eurobserv-er.org/pdf/baro186_a.asp. Accessed 17 Nov 2009

  • Fargione F, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon dept. Science 319:1235–1238

    CAS  Google Scholar 

  • Feuge RO, Gros AT (1949) Modification of vegetable oils. VII. Alkali catalyzed interesterification of peanut oil with ethanol. J Am Oil Chem Soc 26:97–102

    CAS  Google Scholar 

  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304

    CAS  Google Scholar 

  • Fixter LM, Nagi MN, McCormack JG, Fewson CA (1986) Structure, distribution and function of wax esters in Acinetobacter calcoaceticus. J Gen Microbiol 132:3147–3157

    CAS  Google Scholar 

  • Fjerback L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Google Scholar 

  • Foglia TA, Nelson LA, Dunn RO, Marmer WN (1997) Low-temperature properties of alkyl esters of tallow and grease. J Am Oil Chem Soc 74:951–955

    CAS  Google Scholar 

  • Formo MW (1954) Ester reactions of fatty materials. J Am Oil Chem Soc 31:548–559

    CAS  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    CAS  Google Scholar 

  • Freedman B, Pryde EH (1982) Fatty esters from vegetable oils for use as a diesel fuel. In: Vegetable oil fuels—Proceedings of the international conference on plant and vegetable oils as fuels. Fargo, N. D., 2–4 August, St. Jospeh, Mich. S. 117–122

  • Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    CAS  Google Scholar 

  • Fujii T, Kobayashi O, Yoshimoto H, Furukawa S, Tamai Y (1997) Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Appl Environ Microbiol 63:910–915

    CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    CAS  Google Scholar 

  • Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673

    CAS  Google Scholar 

  • Gao B, Su E, Lin J, Jiang Z, Ma Y, Wie D (2009) Development of recombinant Escherichia coli whole-cell biocatalyst expresssing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J Biotechnol 139:169–175

    CAS  Google Scholar 

  • German Biogas Association (2009) Aktuelle Branchenzahlen dokumentieren positive Entwicklung für Biogasnutzung. In: press release 10 Nov 2009, http://www.biogas.org/datenbank/file/notmember/presse/09-11-10_PM_Branchenzahlen_AT09.pdf, accessed 17 Nov 2009

  • Goering CE, Schwab AW, Daugherty MJ, Pryde EH, Heakin AJ (1982) Fuel properties of eleven vegetable oils. Trans ASAE 25:1472–1483

    CAS  Google Scholar 

  • Gorski NP, Nouraldin H, Dube DM, Preffer FI, Dombkowski DM, Villa EM, Lewandrowski KB, Weiss RD, Hufford C, Laposata M (1996) Reduced fatty acid ethyl ester synthase activity in the white blood cells of alcoholics. Alcohol Clin Exp Res 20:268–274

    CAS  Google Scholar 

  • Goss KA, Alharethi R, Laposata M (1999) Fatty acid ethyl ester synthesis in the preparation of scotch whiskey. Alcohol 17:241–245

    CAS  Google Scholar 

  • Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Comb Sci 24:125–164

    CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    CAS  Google Scholar 

  • Gubitosi-Klug RA, Gross RW (1996) Fatty acid ethyl esters, non-oxidative metabolites of ethanol, accelerate the kinetics of activation of the human brain delayed rectifier K + channel. J Biol Chem 271:519–522

    Google Scholar 

  • Haas MJ (2004) The interplay between feedstock quality and esterification technology in biodiesel production. Lipid Technol 16:7–11

    CAS  Google Scholar 

  • Haas MJ, Foglia TA (2005) Alternate feedstocks and technologies for biodiesel production. In: Knothe G, Van Gerpen J, Krahl J (eds) The Biodiesel Handbook. AOCS Press, Champaign, pp 50–69

    Google Scholar 

  • Haas MJ, Scott KM (1996) Combined nonenzymatic-enzymatic method for the synthesis of simple alkyl fatty acid esters from soapstock. J Am Oil Chem Soc 73:1393–1401

    CAS  Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2005) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678

    Google Scholar 

  • Haber PS, Wilson JS, Apte MW, Pirola RC (1993) Fatty acid ethyl esters increase rat pancreatic lysosomal fragility. J Lab Clin Med 121:759–764

    CAS  Google Scholar 

  • Habulin M, Knez Z (2001) Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J Chem Technol Biotechnol 76:1260–1266

    CAS  Google Scholar 

  • Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda H (2006) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 101:328–333

    CAS  Google Scholar 

  • Hama S, Tamalampudi S, Suzuki Y, Yoshida A, Fukuda H, Kondo A (2008) Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production. Appl Microbiol Biotechnol 81:637–645

    CAS  Google Scholar 

  • He Q, Xu Y, Teng Y, Wang D (2008) Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis. Chin Jour Catal 29:141–146

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    CAS  Google Scholar 

  • Hoydonckx HE, De Vos DE, Chavan SA, Jacobs PA (2004) Esterification and transesterification of renewable chemicals. Top Catal 27:83–96

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biodiesel production: perspectives and advances. Plant J 54:621–639

    CAS  Google Scholar 

  • Hungund BL, Goldstein DB, Villegas F, Cooper TB (1988) Formation of fatty acid ethyl esters during chronic ethanol treatment in mice. Biochem Pharmacol 37:3001–3004

    CAS  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  Google Scholar 

  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase—a critical review. Crit Rev Biotechnol 28:253–264

    CAS  Google Scholar 

  • Jin G, Bierma TJ, Hamaker CG, Rhykerd R, Loftus LA (2008) Producing biodiesel using whole-cell biocatalysts in separate hydrolysis and methanolysis reactions. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:589–595

    CAS  Google Scholar 

  • Jin G, Bierma TJ, Hamaker CG, Mucha R, Schola V, Stewart J, Wade C (2009) Use of a whole-cell biocatalyst to produce biodiesel in a water-containing system. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:21–28

    CAS  Google Scholar 

  • Joshi HC, Toler J, Walker T (2008) Optimization of cottonseed oil ethanolysis to produce biodiesel high in gossypol content. J Am Oil Chem Soc 85:357–363

    CAS  Google Scholar 

  • Junior JS, Mariano AP, Angelis DF (2009) Biodegradation of biodiesel/diesel blends by Candida viswanathii. Afr J Biotechnol 8:2774–2778

    Google Scholar 

  • Kaieda M, Samukawa T, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Ohtsuka K, Izumoto E, Fukuda H (1999) Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J Biosci Bioeng 88:627–631

    CAS  Google Scholar 

  • Kaieda M, Samukawa T, Kondo A, Fukuda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15

    CAS  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    CAS  Google Scholar 

  • Kalscheuer R, Uthoff S, Luftmann H, Steinbüchel A (2003) In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1. Eur J Lipid Sci Technol 105:578–584

    CAS  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Steinbüchel A (2007) Engineered microorganisms for sustainable production of diesel fuel and other oleochemicals from renewable plant biomass. Int Sugar J 109:16–19

    CAS  Google Scholar 

  • Kaphalia BS, Fritz RR, Ansari GA (1997) Purification and characterization of rat liver microsomal fatty acid ethyl and 2-chloroethyl ester synthase and their relationship with carboxylesterase (pI 6.1). Chem Res Toxicol 10:211–218

    CAS  Google Scholar 

  • Kapur JP, Bhasin SD, Mathur KC (1982) Oilseeds for food and industrial applications. Chem Age India 33:475–482

    Google Scholar 

  • Keskin A, Gürü M, Altiparmak D (2006) Biodiesel production from tall oil with synthesized Mn and Ni based additives: effects of the additives on fuel consumption and emissions. Fuel 86:1139–1143

    Google Scholar 

  • Khan N, Warith MA, Luk GA (2007) Comparison of acute toxicity of biodiesel, biodiesel blends, and diesel on aquatic organisms. J Air Waste Manage Assoc 57:286–296

    CAS  Google Scholar 

  • Kim SJ, Jung SM, Park YP, Park K (2007) Lipase catalyzed transesterification of soybean oil using ethyl acetate, an alternative acyl acceptor. Biotechnol Bioprocess Eng 12:441–445

    CAS  Google Scholar 

  • Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. Ind Oils 12:1103–1107

    Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    CAS  Google Scholar 

  • Koo-Oshima S, Hahn N, Van Gerpen J (1998) Comprehensive health and environmental effects of biodiesel as an alternative fuel. Proceedings of the Fall meeting of the Society for Risk Analysis, Paris, France

  • Korus RA, Hoffman DS, Bam N, Peterson CL, Drown DC (1993) Transesterification process to manufacture ethyl ester of rape oil. In: Proceedings of the First Biomass Conference of the Americas: Energy, Environment, Agriculture and Industry, Burlington, VT, 30 Aug–2 Sep, 2:815–826

  • Krisnangkura K, Simamaharnnop R (1992) Continuous transmethylation of palm oil in an organic solvent. J Am Oil Chem Soc 72:427–432

    Google Scholar 

  • Kusano M, Sakai Y, Kato N, Yoshimoto H, Tamai Y (1999) A novel hemiacetal dehydrogenase activity involved in ethyl acetate synthesis in Candida utilis. J Biosci Bioeng 87:690–692

    CAS  Google Scholar 

  • Lapinskiené A, Martinkus P, Rebzdaite V (2006) Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ Pollut 142:432–437

    Google Scholar 

  • Laposata EA, Lange LG (1986) Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–499

    CAS  Google Scholar 

  • Lara PV, Park EY (2004) Potential application of waste activated bleaching earth on the production of fatty acid alkyl esters using Candida cylindracea lipase in organic solvent system. Enzyme Microb Technol 34:270–277

    CAS  Google Scholar 

  • Lee SY, Hubbe MA, Saka S (2006) Biodiesel from wood pulping. BioResources 1:150–171

    Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    CAS  Google Scholar 

  • Li LL, Du W, Liu DH, Wang L, Li ZB (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 43:58–62

    CAS  Google Scholar 

  • Li W, Du W, Liu D (2007a) Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology. J Mol Catal B Enzyme 45:122–127

    CAS  Google Scholar 

  • Li W, Du W, Liu D (2007b) Rhizopus oryzae IFO 4697 whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Proc Biochem 42:1481–1485

    CAS  Google Scholar 

  • Licht FO (2008) 2008 world fuel ethanol production, estimates. Renewable Fuels Association, RFA http://www.ethanolrfa.org/industry/statistics/

  • Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23:641–659

    CAS  Google Scholar 

  • Liu SQ, Holland R, Crow VL (2004) Esters and their biosynthesis in fermented dairy products: a review. Int Dairy J 14:923–945

    CAS  Google Scholar 

  • Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363

    CAS  Google Scholar 

  • Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CAS  Google Scholar 

  • Ma F, Clements LD, Hanna MA (1998) The effects of catalyst, free fatty acids and water on transesterification of beef tallow. Trans ASAE 41:1261–1264

    CAS  Google Scholar 

  • Makareviciene V, Janulis P (2003) Environmental effect of rapeseed oil ethyl ester. Renew Energy 28:2395–2403

    CAS  Google Scholar 

  • Malhotra R (2007) Road to emerging alternatives—biofuels and hydrogen. Journal of the Petrotech Society 4:34–40

    Google Scholar 

  • Mariano AP, Tomasella RC, Oliveira LM, Contiero J, Angelis DF (2008) Biodegradability of diesel and biodiesel blends. Afr J Biotechnol 7:1323–1328

    Google Scholar 

  • Marshall WF (1993) Biodiesel, commercialization of a renewable fuel. IIT Research Institute, National Institute for Petroleum and Energy Research, Bartlesville, OK (report for the US Department of Energy, Energy Efficiency and Renewable Fuels, Washington, DC)

  • Mason AB, Dufour JP (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16:1287–1298

    CAS  Google Scholar 

  • Matsumoto T, Takahashi S, Kaieda M, Ueda M, Tanaka A, Fukuda H, Kondo A (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57:515–520

    CAS  Google Scholar 

  • Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    CAS  Google Scholar 

  • McCormick RL, Graboski MS, Alleman TL, Herring AM, Shaine Tyson K (2001) Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ Sci Technol 35:1742–1747

    CAS  Google Scholar 

  • Meher LC, Vidya Sagar C, Naik SN (2004) Technical aspects of biodiesel production by transesterification—a review. Renewable Sustainable Energy Rev 10:248–268

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CAS  Google Scholar 

  • Mittelbach M (1990) Lipase catalyzed alcoholysis of sunflower oil. J Am Oil Chem Soc 67:168–170

    CAS  Google Scholar 

  • Mittelbach M, Tritthart P (1988) Diesel fuel derived from vegetable oils. II. Emission tests using methyl esters of used frying oil. J Am Oil Chem Soc 65:1185–1187

    CAS  Google Scholar 

  • Mrozik A, Hupert-Kocurek K, Nowak B, Labuzek S (2008) Microbial lipases and their significance in the protection of the environment. Post Mikrobiol 47:43–50

    CAS  Google Scholar 

  • Nakashima T, Kyotani S, Izumoto E, Fukuda H (1990) Cell aggregation as a trigger for enhancement of intracellular lipase production by a Rhizopus species. J Ferment Bioeng 70:83–89

    Google Scholar 

  • Narasimharao K, Lee A, Wilson K (2007) Catalysts in production of biodiesel: a review. J Biobased Mater Bioenergy 1:19–30

    Google Scholar 

  • National Biodiesel Board (2009) http://www.biodiesel.org/

  • Neale AD, Scopes RK, Kelly JM, Wettenhall REH (1986) The two alcohol dehydrogenases of Zymomonas mobilis. Eur J Biochem 154:119–124

    CAS  Google Scholar 

  • Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195

    CAS  Google Scholar 

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:662–700

    Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    CAS  Google Scholar 

  • Oliveira D, Oliveira JV (2001) Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J Supercrit Fluids 19:141–148

    CAS  Google Scholar 

  • Oliveira AC, Rosa MF (2006) Enzymatic transesterification of sunflower oil in an aqueous-oil-biphasic system. J Am Oil Chem Soc 83:21–25

    CAS  Google Scholar 

  • Park MO (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol 187:1426–1429

    CAS  Google Scholar 

  • Park YC, Horton Shaffer CE, Bennett GN (2009) Microbial formation of esters. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2170-x

    Google Scholar 

  • Pasqualino JC, Montané D, Salvadó J (2006) Synergic effects of biodiesel in the biodegradability of fossil-derived fuels. Biomass Bioenergy 30:874–879

    CAS  Google Scholar 

  • Peterson CL, Möller G (2005) Biodiesel fuels: biodegradability, biological, and chemical oxygen demand, and toxicity. In: Knothe G, Van Gerpen J, Krahl J (eds) The Biodiesel Handbook. AOCS Press, Champaign, pp 143–158

    Google Scholar 

  • Peterson CL, Reece DL (1994) Emissions tests with an on-road vehicle fueled with methyl and ethyl esters of rapeseed oil. ASAE Paper No. 946532. ASAE International Winter Meeting, Atlanta, Georgia. 13–16 Dec

  • Peterson CL, Reece DL, Cruz R, Thompson J (1992) A comparison of ethyl and methyl esters of vegetable oils as diesel fuel substitutes in liquid fuels from renewable resource. Proceedings of Alternative Energy Conference. ASAE, St. Joseph, MI 49085-9659

  • Peterson CL, Hammond B, Reece D, Thompson J, Beck S (1995) Performance and durability testing of diesel engines using ethyl and methyl ester fuels. Department of Biological and Agricultural Engineering. University of Idaho, Moscow, Idaho 83844-2060. National Biodiesel Board, 1 Jan 1995–31 Dec 1995

  • Pimentel D, Patzek T, Cecil G (2007) Ethanol production: energy, economic, and environmental losses. Rev Environ Contam Toxicol 189:25–41

    CAS  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff M, Paul GS, McCormack R, Kyriazis J, Krueger T (2008) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies 1:41–78

    Google Scholar 

  • Pitter P, Chudoba J (1990) Biodegradability of organic substances in the aquatic environment. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Refaai MA, Nguyen PN, Steffensen TS, Evans RJ, Cluette-Brown JE, Laposata M (2002) Liver and adipose tissue fatty acid ethyl esters obtained at autopsy are postmortem markers for premortem ethanol intake. Clin Chem 48:77–83

    CAS  Google Scholar 

  • Riveros-Rosas H, Julian-Sanchez A, Pina E (1997) Enzymology of ethanol and acetaldehyde metabolism in mammals. Arch Med Res 28:453–471

    CAS  Google Scholar 

  • Rodrigues RC, Volpato G, Wada K, Ayub MAZ (2008) Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols. J Am Oil Chem Soc 85:925–930

    CAS  Google Scholar 

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    CAS  Google Scholar 

  • Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, Thevelein JM (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446–4456

    CAS  Google Scholar 

  • Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74:454–461

    CAS  Google Scholar 

  • Saghir M, Werner J, Laposata M (1997) Rapid in vivo hydrolysis of fatty acid ethyl esters, toxic nonoxidative ethanol metabolites. Am J Physiol 273:184–190

    Google Scholar 

  • Salem RO, Laposata M (2005) Alcohol and fatty acid ethyl esters. In: Preedy VR, Watson R (eds.) Comprehensive handbook of alcohol related pathology, Vol. 3. Elsevier Ltd

  • Selmi B, Thomas D (1998) Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent-free medium. J Am Oil Chem Soc 75:691–695

    CAS  Google Scholar 

  • Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzyme 17:133–142

    CAS  Google Scholar 

  • Sorrell S, Speirs J, Bentley R, Brandt A, Miller R (2009) Global oil depletion. An assessment of the evidence for a near-term peak in global oil production. UK Energy Research Centre. ISBN 1-903144-0-35; http://www.ukerc.ac.uk/support/tiki-index.php?page=Global+Oil+Depletion

  • Soumanou MM, Bornscheuer UT (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33:97–103

    CAS  Google Scholar 

  • Srivastava A, Prasad R (2000) Trigylcerides-based diesel fuels. Renewable Sustainable Energy Rev 4:111–133

    CAS  Google Scholar 

  • Staat F, Vallet E (1994) Vegetable oil methyl ester as a diesel substitute. Chem Ind 21:863–865

    Google Scholar 

  • Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferases. J Bacteriol 187:1369–1376

    Google Scholar 

  • Stratford M, Anslow PA (1996) Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers and medium-chain fatty acids. FEMS Microbiol Lett 142:53–58

    CAS  Google Scholar 

  • Szczepiorkowski Z, Dickersin GR, Laposata M (1995) Fatty acid ethyl esters decrease human hepatoblastoma cell proliferation and protein synthesis. Gastroenterology 108:515–521

    CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    CAS  Google Scholar 

  • Treloar T, Madden LJ, Winter JS, Smith JL, Jersey J (1996) Fatty acid ethyl ester synthesis by human liver microsomes. Biochim Biophys Acta 1299:160–166

    Google Scholar 

  • Tsujita T, Okuda H (1994) The synthesis of fatty acid ethyl ester by carboxylester lipase. Eur J Biochem 224:57–62

    CAS  Google Scholar 

  • Ulgiati S (2001) A comprehensive energy and economic assessment of biofuels: when "green" is not enough. Crit Rev Plant Sci 20:71–106

    Google Scholar 

  • Uthoff S, Stöveken T, Weber N, Vosmann K, Klein E, Kalscheuer R, Steinbüchel A (2005) Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase of Acinetobacter sp. stain ADP1. Appl Environ Microbiol 71:790–796

    CAS  Google Scholar 

  • Uthoff S, Bröker D, Steinbüchel A (2009) Current state and perspective of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2:551–565

    CAS  Google Scholar 

  • Van Laere S, Saerens S, Verstrepen K, Van Dijck P, Thevelein J, Delvaux F (2008) Flavour formation in fungi: characterisation of K1Atf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Appl Microbiol Biotechnol 78:783–792

    Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotech 35:421–430

    CAS  Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinchkx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    CAS  Google Scholar 

  • Wang L, Du W, Liu DH, Li LL, Dai NM (2006) Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J Mol Catal B Enzyme 43:29–32

    CAS  Google Scholar 

  • Wang D, Xu Y, Teng Y (2007) Synthetic activity enhancement of membrane bound lipase from Rhizopus chinensis by pretreatment with isooctane. Bioprocess Biosyst Eng 30:147–155

    Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara Y, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360

    CAS  Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2001) Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc 78:703–707

    CAS  Google Scholar 

  • Werner J, Laposata M, Fernandez-Del Castillo C, Saghir M, Iozzo R, Lewandrowski KB, Warshaw AL (1997) Pancreatic injury in rats induced by fatty acid ethyl esters, a nonoxidative metabolite of alcohol. Gastroenterology 113:286–294

    CAS  Google Scholar 

  • World Energy Outlook 2008. International Energy Agency. http://www.worldenergyoutlook.org/2008.asp

  • Wu P, Yang Y, Colucci JA, Grulke EA (2007) Effect of ultrasonication on droplet size in biodiesel mixtures. J Am Oil Chem Soc 84:877–884

    CAS  Google Scholar 

  • Wyatt VT, Hess MA, Dunn RO, Foglia TA, Haas MJ, Marmer WN (2005) Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. J Am Oil Chem Soc 82:585–591

    CAS  Google Scholar 

  • Xu Y, Du W, Liu D (2003) A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol Lett 25:1239–1241

    CAS  Google Scholar 

  • Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 95:1–10

    CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    CAS  Google Scholar 

  • Yunoki K, Yasui Y, Hirose S, Ohnishi M (2005) Fatty acids in must prepared from eleven grapes grown in Japan: comparison with wine and effect on fatty acid ethyl ester formation. Lipids 40:361–367

    CAS  Google Scholar 

  • Yunoki K, Hirose S, Ohnishi M (2007) Ethyl esterification of long-chain unsaturated fatty acids derived from grape must by yeast during alcoholic fermentation. Biosci Biotechnol Biochem 71:3105–3310

    CAS  Google Scholar 

  • Zah R, Böni H, Gauch M, Hischier R, Lehmann M, Wäger P (2007) Life cycle assessment of energy products: environmental assessment of biofuels—executive summary. EMPA for the Federal Office for Energy, the Federal Office for the Environment, and the Federal Office for Agriculture, Bern

  • Zajac G, Piekarski W, Krzaczek P (2008) Comparison of an effect of FAME and FAEE addition to diesel fuel on energetic parameters of an engine. Teka Kom Motoryz Energ Rol 8a:217–223

    Google Scholar 

  • Zhang X, Peterson CL, Reece D, Haws R, Moller G (1998) Biodegradability of biodiesel in the aquatic environment. Trans ASAE 41:1423–1430

    CAS  Google Scholar 

  • Zhao X, El-Zahab B, Brosnahan R, Perry J, Wang P (2007) An organic soluble lipase for water-free synthesis of biodiesel. Appl Biochem Biotechnol 143:236–243

    CAS  Google Scholar 

  • Zhou W, Konar SK, Boocock DGB (2003) Ethyl ester from the single-phase base-catalyzed ethanolysis of vegetable oils. J Am Oil Chem Soc 80:367–371

    CAS  Google Scholar 

  • Zoebelein H (2001) Dictionary of renewable resources. Wiley-VCH Verlag GmbH, Weinheim, p 299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Additional information

Annika Röttig and Leonie Wenning contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röttig, A., Wenning, L., Bröker, D. et al. Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85, 1713–1733 (2010). https://doi.org/10.1007/s00253-009-2383-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2383-z

Keywords

Navigation