Skip to main content
Log in

Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To explore the potential of Ashbya gossypii as a host for the expression of recombinant proteins and to assess whether protein secretion would be more similar to the closely related Saccharomyces cerevisiae or to other filamentous fungi, endoglucanase I (EGI) and cellobiohydrolase I (CBHI) from the fungus Trichoderma reesei were successfully expressed in A. gossypii from plasmids containing the two micron sequences from S. cerevisiae, under the S. cerevisiae PGK1 promoter. The native signal sequences of EGI and CBHI were able to direct the secretion of EGI and CBHI into the culture medium in A. gossypii. Although CBHI activity was not detected using 4-methylumbelliferyl-β-d-lactoside as substrate, the protein was detected by Western blot using monoclonal antibodies. EGI activity was detectable, the specific activity being comparable to that produced by a similar EGI producing S. cerevisiae construct. More EGI was secreted than CBHI, or more active protein was produced. Partial characterization of CBHI and EGI expressed in A. gossypii revealed overglycosylation when compared with the native T. reesei proteins, but the glycosylation was less extensive than on cellulases expressed in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola ML, Bamford DH, Korhola M (1991) Monoclonal antibodies against core and cellulose-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643–649

    Article  CAS  Google Scholar 

  • Althöefer H, Pompeus M, Revuelta JL, Santos M, Jiminez A, Benito R, Santamaria R, Fernandez J (2001) Protein production using Ashbya gossypii. Patent WO/2001/023576

  • Archer DB, Mckenzie DA, Jeenes DJ, Roberts IN (1992) Proteolytic degradation of heterologous protein expressed in Aspergillus niger. Biotechnol Lett 14:357–362

    Article  CAS  Google Scholar 

  • Ashby SF, Nowell W (1926) The fungi of stigmatomycosis. Ann Bot 40:69–84

    Google Scholar 

  • Boer H, Teeri T, Koiivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69:486–494

    Article  CAS  Google Scholar 

  • Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CAMJJ (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-HIL6 fusion protein. J Biotechnol 31:135–145

    Article  CAS  Google Scholar 

  • Clarke AJ (1997) Biodegradation of cellulose: enzymology and biotechnology. Technomic Publishing, Lancaster

    Google Scholar 

  • Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochem Biophys Acta 1426:309–322

    CAS  Google Scholar 

  • Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388

    Article  CAS  Google Scholar 

  • Deshpande N, Wilkins MR, Packer N, Nevalainen H (2008) Protein glycosylation pathways in filamentous fungi. Glycobiology 18:626–637

    Article  CAS  Google Scholar 

  • Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pöhlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

    Article  CAS  Google Scholar 

  • Dünkler A, Wendland J (2007) Use of MET3 promoters for regulated gene expression in Ashbya gossypii. Curr Genet 52:1–10

    Article  Google Scholar 

  • Flint HJ, Zhang J-X, Martin J (1994) Multiplicity and expression of xylanases in the rumen cellulolytic bacterium Ruminococcus flavefaciens. Curr Microbiol 29:139–143

    Article  CAS  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochem Biophys Acta 1426:227–237

    CAS  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  Google Scholar 

  • Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB, Baker JO, Thomas SR, Himmel ME (1999) Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris. Biotechnol Prog 15:828–833

    Article  CAS  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  Google Scholar 

  • Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1:1–10

    Article  Google Scholar 

  • Jiménez A, Santos MA, Pompejus M, Revuelta JL (2005) Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Environ Microbiol 71:5743–5751

    Article  Google Scholar 

  • Jimenez A, Davies J (1980) Expression of a transposable antibiotic resistance element in Saccharomyces. Nature 287:869–871

    Article  CAS  Google Scholar 

  • Kanamasa S, Tajima S, Park EY (2007) Isocitrate dehydrogenase and isocitrate lyase are essential enzymes for riboflavin production in Ashbya gossypii. Biotechnol Bioprocess Eng 12:92–99

    Article  CAS  Google Scholar 

  • Karos M, Vilarino C, Bollschweiler C, Revuelta JL (2004) A genome-wide transcription analysis of a fungal riboflavin overproducer. J Biotechnol 113:69–76

    Article  CAS  Google Scholar 

  • Kato T, Park EY (2005) Expression of alanine:glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii. Appl Microbiol Biotechnol 71:46–52

    Article  Google Scholar 

  • Kubicek CP (1992) The cellulase proteins of Trichoderma reesei: structure, multiplicity, mode of action and regulation of formation. Adv Biochem Eng Biotechnol 45:1–25

    CAS  Google Scholar 

  • Kubicek CP, Messner R, Gruber F, Mach RL, Kubicek-Pranz EM (1993) The Trichoderma cellulase regulatory puzzle: from the interior life of a secretory fungus. Enzyme Microb Technol 15:90–99

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Laymon RA, Adney WS, Mohagheghi A, Himmel ME, Thomas SR (1996) Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli. Appl Biochem Biotech 57(58):389–400

    Article  Google Scholar 

  • Li Z, Xiong F, Lin Q, d'Anjou M, Daugulis AJ, Yang DS, Hew CL (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21:438–445

    Article  Google Scholar 

  • Maley F, Trimble RB, Tarentino AL, Plummer TH Jr (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204

    Article  CAS  Google Scholar 

  • Maras M, De Bruyn A, Schraml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R (1997) Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245:617–625

    Article  CAS  Google Scholar 

  • Maras M, van Die I, Contreras R, van den Hondel CA (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 16:99–107

    Article  CAS  Google Scholar 

  • Park CS, Chang CC, Ryu DD (2000) Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica. Appl Biochem Biotechnol 87:1–15

    Article  CAS  Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987a) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Article  Google Scholar 

  • Penttilä ME, André L, Saloheimo M, Lehtovaara P, Knowles JK (1987b) Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3:175–185

    Article  Google Scholar 

  • Penttilä ME, Andre L, Lehtovaara P, Bailey M, Teeri TT, Knowles JKC (1988) Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103–112

    Article  Google Scholar 

  • Plummer TH Jr, Tarentino AL (1991) Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology 1:257–263

    Article  CAS  Google Scholar 

  • Reinikainen T, Rouhonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles J, Teeri T (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins Struct Funct Genet 14:475–482

    Article  CAS  Google Scholar 

  • Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in A. niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122:155–161

    Article  CAS  Google Scholar 

  • Royer JC, Moyer DL, Reiwitch SG, Madden MS, Jensen EB, Brown SH, Yonker CC, Johnston JA, Golightly EJ, Yoder WT, Shuster JR (1995) Fusarium graminearum A 3/5 as a novel host for heterologous protein production. Biotechnology (NY) 13:1479–1483

    Article  CAS  Google Scholar 

  • Ruohonen L, Aalto MK, Keränen S (1995) Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J Biotechnol 39:193–203

    Article  CAS  Google Scholar 

  • Saloheimo A, Henrissat B, Hoffrén AM, Teleman O, Penttilä M (1994) A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol Microbiol 13:219–228

    Article  CAS  Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor LabPress, Plainview

    Google Scholar 

  • Shi X, Karkut T, Chamankhah M, Alting-Mees M, Hemmingsen SM, Hegedus D (2003) Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr Purif 28:321–330

    Article  CAS  Google Scholar 

  • Srisodsuk M, Reinikainen T, Penttilä M, Teeri TT (1993) Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J Biol Chem 268:20756–20761

    CAS  Google Scholar 

  • Stahmann KP, Böddecker T, Sahm H (1997) Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid. Eur J Biochem 244:220–225

    Google Scholar 

  • Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14:713–724

    Article  CAS  Google Scholar 

  • Steiner S, Wendland J, Wright MC, Philippsen P (1995) Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 140:973–987

    CAS  Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J Biotechnol 65:163–171

    Article  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterisation of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  Google Scholar 

  • Teeri TT (1987) The cellulolytic enzyme system of Trichoderma reesei. Dissertation, University of Helsinki, VTT Publication No. 38

  • Teeri TT, Kumar V, Lehtovaara P, Knowles J (1987) Construction of cDNA libraries by blunt-end ligation: high-frequency cloning of long cDNAs from filamentous fungi. Anal Biochem 164:60–67

    Article  CAS  Google Scholar 

  • Trimble RB, Maley F (1984) Optimizing hydrolysis of N-linked high-mannose oligosaccharides by endo-beta-N-acetylglucosaminidase H. Anal Biochem 141:515–522

    Article  CAS  Google Scholar 

  • Van Arsdell JN, Kwokl S, Schweickart VL, Ladner MB, Gelfandl DH, Innisl MA (1987) Cloning, characterization and expression in Saccharomyces cerevisiae endoglucanase I from Trichoderma reesei. Bio/technology 5:60–64

    Article  Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJ, Fraissinet TL, Visser J (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

    Article  Google Scholar 

  • von Ossowski I, Teeri T, Kalkkinen N, Oker-Blom C (1997) Expression of a fungal cellobiohydrolase in insect cells. Biochem Biophys Res Commun 233:25–29

    Article  Google Scholar 

  • Wach A, Brachat A, Pöhlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  CAS  Google Scholar 

  • Webster TD, Dickson RC (1983) Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene 26:243–252

    Article  CAS  Google Scholar 

  • Wendland J, Pohlmann R, Dietrich F, Steiner S, Mohr C, Philippsen P (1999) Compact organization of rRNA genes in the filamentous fungus Ashbya gossypii. Curr Genet 35:618–625

    Article  CAS  Google Scholar 

  • Wendland J, Ayad-Durieux Y, Knechtle P, Rebischung C, Philippsen P (2000) PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 242:381–391

    Article  CAS  Google Scholar 

  • Wickerham L, Flickinger MH, Johnston RM (1946) The production of riboflavin by Ashbya gossypii. Arch Biochem 9:95–98

    CAS  Google Scholar 

  • Wright MC, Philippsen P (1991) Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109:99–105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Fundação para a Ciência e a Tecnologia (FCT), Portugal, is acknowledged: project AshByofactory PTDC/EBB-EBI/101985/2008 and grant SFRH/BD/30229/2006 to Orquidea Ribeiro.

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucília Domingues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, O., Wiebe, M., Ilmén, M. et al. Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii . Appl Microbiol Biotechnol 87, 1437–1446 (2010). https://doi.org/10.1007/s00253-010-2610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2610-7

Keywords

Navigation