Skip to main content

Advertisement

Log in

Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The physiology of lipid production in Streptomyces avermitilis MA-4680 with regard to the fatty acid composition of the accumulated lipids and their cellular distribution was analyzed. Cells were able to accumulate about ten to 30 lipid granules with diameters between 100 and 500 nm filling about 70–80% of the cell cytoplasm. Gas chromatography/mass spectrometry analyses of total cellular lipids and from isolated triacylglycerols (TAG) confirmed a similar fatty acid composition with a large portion of iso- and anteiso-methyl-branched fatty acids. De novo biosynthesis of wax esters (WE) appeared only during cocultivation on glucose and hexadecanol as carbon source. Homology alignments with the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT; AtfA) from Acinetobacter baylyi strain ADP1 yielded one open reading frame in the genome databases of S. avermitilis MA-4680 referred to as SAV7256 with 25.3% homology. The highly conserved HHAxxDG active site motif found in AtfA, which is present in SAV7256, as well as the similar hydrophobicity profiles of AtfA and SAV7256 indicate a similar structure and function of both proteins. High acyl-CoA:diacylglycerol acyltransferase activity (DGAT; 143 pmol (mg min)−1) but low wax ester synthase activity (WS; 1.3 pmol (mg min)−1) were detected in crude extracts of S. avermitilis, which were consistent with the high TAG and negligible WE content of the cells. This indicates that TAG accumulation in S. avermitilis MA-4680 is mediated by the classical acyl-CoA-dependent DGAT pathway. Heterologous expression experiments in recombinant Escherichia coli BL21(DE3) demonstrated both WS and DGAT enzyme activity of SAV7256. Furthermore, substrate specificities of the acyltransferase SAV7256 will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  • Alvarez FA, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154:2327–2335

    Article  CAS  PubMed  Google Scholar 

  • Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Ericson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl-CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A 95:13018–13023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV Jr (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876

    Article  CAS  PubMed  Google Scholar 

  • Cropp TA, Smogowicz AA, Hafner EW, Denoya CD, McArthur AI, Reynolds KA (2000) Fatty-acid biosynthesis in a branched-chain alpha-keto acid dehydrogenase mutant of Streptomyces avermitilis. Can J Microbiol 46:506–514

    Article  CAS  PubMed  Google Scholar 

  • Dahlqvist A, Ståhl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97:6487–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferase and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulco AJ (1983) Fatty acid metabolism in bacteria. Prog Lipid Res 22:133–160

    Article  CAS  PubMed  Google Scholar 

  • Hall T (1998) BioEdit. Biological sequence alignment editor for Windows. North Carolina State University, Raleigh, NC

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG (1989) Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277

    Article  CAS  Google Scholar 

  • Hopwood DA, Kieser T, Bibb MJ, Buttner MJ, Chater KF (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Ikeda H, Nonomiya T, Usami M, Ohta T, Ōmura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A 96:9509–9514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68:1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Wältermann M, Alvarez HM, Steinbüchel A (2001) Preparative isolation of lipid inclusion bodies from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol 177:20–28

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Uthoff S, Luftmann H, Steinbüchel A (2003) In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter calcoaceticus ADP1. Eur J Lip Sci Technol 105:578–584

    Article  CAS  Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Novák J, Řezanka T, Koza T, Vanĕk Z (1990) Biosynthesis of avermectins and lipids in Streptomyces avermitilis. FEMS Microbiol Lett 70:291–294

    Google Scholar 

  • Okanishi M, Suzuki K, Umezawa H (1974) Formation and reversion of streptomycete protoplasts: cultural conditions and morphological study. J Gen Microbiol 80:389–400

    Article  CAS  PubMed  Google Scholar 

  • Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140:931–943

    Article  CAS  PubMed  Google Scholar 

  • Packter NM, Olukoshi ER (1995) Ultrastructural studies of neutral lipid localisation in Streptomyces. Arch Microbiol 164:420–427

    Article  CAS  PubMed  Google Scholar 

  • Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179:2969–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose K, Steinbüchel A (2002) Construction and intergeneric conjugative transfer of a pSG5-based cosmid vector from Escherichia coli to the polyisoprene rubber degrading strain Micromonospora aurantiaca W2b. FEMS Microbiol Lett 211:129–132

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. New York Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222

    Article  CAS  PubMed  Google Scholar 

  • Shim MS, Kim WS, Kim JH (1997) Neutral lipids and lipase activity for actinorhodin biosynthesis of Streptomyces coelicolor A3(2). Biotechnol Lett 19:221–223

    Article  CAS  Google Scholar 

  • Sia EA, Kuehner DM, Figurski DH (1996) Mechanism of retrotransfer in conjugation: prior transfer of the conjugative plasmid is required. J Bacteriol 178:1457–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable colony staining method using Nil Red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–78

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (1996) PHB and other polyhydroxyalkanoic acids. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol 6, 2nd edn. Wiley VCH, Heidelberg, pp 403–464

    Chapter  Google Scholar 

  • Stöveken T, Steinbüchel A (2008) Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of eleochemicals and fuels. Angew Chem Int Ed Engl 47:3688–3694

    Article  PubMed  CAS  Google Scholar 

  • Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stöveken T, Kalscheuer R, Steinbüchel A (2009) Both histidine residues of the conserved HHXXXDG motif are essential for wax ester synthase/acyl-CoA:diacylglycerol acyltransferase catalysis. Eur J Lipid Sci Technol 111:112–119

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheet: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uthoff S, Stöveken T, Weber N, Vosmann K, Klein E, Kalscheuer R, Steinbüchel A (2005) Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Appl Environ Microbiol 71:790–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid-bodies in prokaryotes: recent insights into structure, formation and relationships to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wältermann M, Stöveken T, Steinbüchel A (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthase/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    CAS  PubMed  Google Scholar 

  • Yoon YJ, Kim ES, Hwang YS, Choi CY (2004) Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl Microbiol Biotechnol 63:626–634

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Ellis HM, Lee E, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jutta Malkus and Rudolf Reichelt (Institut für Medizinische Physik, Münster) for expert electron microscopic preparations and for developing the TEM micrographs and R. M. Kroppenstedt (DSMZ Braunschweig) for performing GC analyses of some lipid samples. Provision of antibodies against AtfA of A. baylyi strain ADP1 by Tim Stöveken is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Additional information

Chlud Kaddor and Karolin Biermann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaddor, C., Biermann, K., Kalscheuer, R. et al. Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Appl Microbiol Biotechnol 84, 143–155 (2009). https://doi.org/10.1007/s00253-009-2018-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2018-4

Keywords

Navigation