Skip to main content
Log in

Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeasts can convert amino acids to flavor alcohols following the Ehrlich pathway, a reaction sequence comprising transamination, decarboxylation, and reduction. The alcohols can be further derivatized to the acetate esters by alcohol acetyl transferase. Using l-methionine as sole nitrogen source and at high concentration, 3-(methylthio)-1-propanol (methionol) and 3-(methylthio)-propylacetate (3-MTPA) were produced with Saccharomyces cerevisiae. Methionol and 3-MTPA acted growth inhibiting at concentrations of >5 and >2 g L−1, respectively. With the wild type strain S. cerevisiae CEN.PK113-7D, 3.5 g L−1 methionol and trace amounts of 3-MTPA were achieved in a bioreactor. Overexpression of the alcohol acetyl transferase gene ATF1 under the control of a TDH3 (glyceraldehyde-3-phosphate dehydrogenase) promoter together with an optimization of the glucose feeding regime led to product concentrations of 2.2 g L−1 3-MTPA plus 2.5 g L−1 methionol. These are the highest concentrations reported up to now for the biocatalytic synthesis of these flavor compounds which are applied in the production of savory aroma compositions such as meat, potato, and cheese flavorings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoki T, Uchida K (1991) Enhanced formation of 3-(methylthio-)-1-propanol in a salt-tolerant yeast, Zygosaccharomyces rouxii, due to deficiency of S-adenosylmethionine synthase. Agric Biol Chem 55:2113–2116

    Article  CAS  Google Scholar 

  • Arctander S (1969) Perfume and flavor chemicals. Aroma chemicals. Published by the author, Montclair, USA

  • Arfi K, Landaud S, Bonnarme P (2006) Evidence for distinct L-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens. Appl Environ Microbiol 72:2155–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Ballance PE (1961) Production of volatile compounds related to the flavour of foods from the Strecker degradation of DL-methionine. J Sci Food Agric 12:532–536

    Article  Google Scholar 

  • Berry DR, Brown C (1987) Physiology of yeast growth. In: Berry DR, Russel I, Steward GG (eds) Yeast biotechnology. Allen and Unwin, London, pp 159–199

    Chapter  Google Scholar 

  • Bonnarme P, Psoni L, Spinnler HE (2000) Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl Environ Microbiol 66:5514–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdock GA (2004) Fenaroli’s handbook of flavor ingredients. CRC, Boca Raton, p 1320

    Book  Google Scholar 

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–8

    CAS  PubMed  Google Scholar 

  • Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–6

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JR, Harrison SJ, Dickinson JA, Hewlins MJ (2000) An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275:10937–42

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JR, Salgado LE, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–34

    Article  CAS  PubMed  Google Scholar 

  • van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714

    Article  PubMed  Google Scholar 

  • Entian K-D, Kötter P (2007) 25 Yeast genetic strain and plasmid collections. Meth Microbiol 36:629–666

    Article  CAS  Google Scholar 

  • Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotech Lett 25:531–536

    Article  CAS  Google Scholar 

  • Etschmann MMW, Sell D, Schrader J (2004) Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J Mol Catal B 29:187–193

    Article  CAS  Google Scholar 

  • Etschmann MM, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92:624–634

    Article  CAS  PubMed  Google Scholar 

  • Etschmann MM, Schrader J (2006) An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Appl Microbiol Biotechnol 71:440–443

    Article  CAS  PubMed  Google Scholar 

  • Gijs L, Perpète P, Timmermans A, Collin S (2000) 3-Methylthiopropionaldehyde as precursor of dimethyl trisulfide in aged beers. J Agric Food Chem 48:6196–6199

    Article  CAS  PubMed  Google Scholar 

  • Güldener US, Heck T, Fielder J, Beinhauer, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashibe M, Katoda S, Owada H, Yoshida H, Katayosa A, Terashima T (1970) Methionine metabolism in yeast. J Ferment Technol 48:22–28

    CAS  Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirosawa I, Aritomi K, Hoshida H, Kashiwagi S, Nishizawa Y, Akada R (2004) Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol. Appl Microbiol Biotechnol 65:68–73

    Article  CAS  PubMed  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  • Kagkli DM, Tache R, Cogan TM, Hill C, Casaregola S, Bonnarme P (2006) Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem. Appl Microbiol Biotechnol 73:434–442

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23:41–61

    Article  CAS  PubMed  Google Scholar 

  • Landaud S, Helinck S, Bonnarme P (2008) Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Appl Microbiol Biotechnol 77:1191–205

    Article  CAS  PubMed  Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SQ, Crow VL (2007) Dairy product and process. WO 2007/136280A1

  • Lusk JL, Rozan A (2005) Consumer acceptance of biotechnology and the role of second generation technologies in the USA and Europe. Trends Biotechnol 23:386–387

    Article  CAS  PubMed  Google Scholar 

  • Moreira N, Mendes F, Hogg T, Vasconcelos I (2005) Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts. Int J Food Microbiol 103:285–294

    Article  CAS  PubMed  Google Scholar 

  • Mueller DA (2007) Flavours: the legal framework. In: Berger RG (ed) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin, pp 15–24

    Chapter  Google Scholar 

  • Perpete P, Duthoit O, De Maeyer S, Imray L, Lawton AI, Stavropoulos KE, Gitonga VW, Hewlins MJ, Dickinson JR (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6:48–56

    Article  CAS  PubMed  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–46

    Article  CAS  PubMed  Google Scholar 

  • Schrader J, Etschmann MM, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds—current industrial processes and future prospects. Biotechnol Lett 26:463–72

    Article  CAS  PubMed  Google Scholar 

  • Schreiber WL, Scharpf LG, Katz I (1997) Future needs of chemistry in flavors and fragrances. Perfumer & Flavorist 22:11–16

    CAS  Google Scholar 

  • Schreier P, Drawert FD, Junker A, Barton H, Leupold G (1976) Über die Biosynthese von Aromastoffen durch Mikroorganismen. Z Lebensm Unters Forsch 162:279–284

    Article  CAS  PubMed  Google Scholar 

  • Seward R, Willetts JM, Dinsdale MG, Lloyd D (1996) The effects of ethanol, hexan-1-ol, and 2-phenylethanol on cider yeast growth, viability, and energy status; synergistic inhibition. J Inst Brew 102:439–443

    Article  CAS  Google Scholar 

  • Stark D, Münch T, Sonnleitner B, Marison IW, Stockar von U (2002) Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnol Prog 18:514–523

    Article  CAS  PubMed  Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–808

    Article  CAS  PubMed  Google Scholar 

  • Whitehead IM, Ohleyer E (1993) Microbial carboxylic acid production method. WO9308293

Download references

Acknowledgements

We thank Dr. Rinji Akada for the donation of the yeast strain RAK 1857, R.C. Treatt & Co. Ltd. for the donation of the 3-MTPA standard, and the German Federal Ministry for Food, Agriculture and Consumer Protection for funding the project (No. 22008803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schrader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etschmann, M.M.W., Kötter, P., Hauf, J. et al. Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts. Appl Microbiol Biotechnol 80, 579–587 (2008). https://doi.org/10.1007/s00253-008-1573-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1573-4

Keywords

Navigation