Skip to main content
Log in

Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The genus Gluconobacter is well known for its rapid and incomplete oxidation of a wide range of substrates. Therefore, Gluconobacter oxydans especially is used for several biotechnological applications, e.g., the efficient oxidation of glycerol to dihydroxyacetone (DHA). For this reaction, G. oxydans is equipped with a membrane-bound glycerol dehydrogenase that is also described to oxidize sorbitol, gluconate, and arabitol. Here, we demonstrated the impact of sldAB overexpression on glycerol oxidation: Beside a beneficial effect on the transcript level of the sldB gene, the growth on glycerol as a carbon source was significantly improved in the overexpression strains (OD 2.8 to 2.9) compared to the control strains (OD 2.8 to 2.9). Furthermore, the DHA formation rate, as well as the final DHA concentration, was affected so that up to 350 mM of DHA was accumulated by the overexpression strains when 550 mM glycerol was supplied (control strain: 200 to 280 mM DHA). Finally, we investigated the effect on sldAB overexpression on the G. oxydans transcriptome and identified two genes involved in glycerol metabolism, as well as a regulator of the LysR family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi O, Moonmangmee D, Shinagawa E, Toyama H, Yamada M, Matsushita K (2003) New quinoproteins in oxidative fermentation. Biochim Biophys Acta 164:10–17

    Article  Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1985) Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem 49:1001–1010

    CAS  Google Scholar 

  • An G, Friesen JD (1980) The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene 12:33–39

    Article  CAS  Google Scholar 

  • Battey AS, Schaffner DW (2001) Modelling bacterial spoilage in cold-filled ready to drink beverages by Acinetobacter calcoaceticus and Gluconobacter oxydans. J Appl Microbiol 91:237–247

    Article  CAS  Google Scholar 

  • Bauer R, Katsikis N, Varga S, Hekmat D (2005) Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess Biosyst Eng 5:37–43

    Article  Google Scholar 

  • Bories A, Claret C, Soucaille P (1991) Kinetic study and optimisation of the production of dihydroxyacetone from glycerol using Gluconobacter oxydans. Process Biochem 26:243–248

    Article  CAS  Google Scholar 

  • Bremus C (2006) Untersuchungen zur Bildung der Vitamin C-Vorstufe 2-Keto-l-Gulonsäure mit. Gluconobacter oxydans Ph.D. thesis, Heinrich Heine-Universität, Düsseldorf

  • Buchert J, Viikari L (1988) Oxidative d-xylose metabolism of G. oxydans. Appl Microbiol Biotechnol 29:375–379

    Article  CAS  Google Scholar 

  • Claret C, Salmon JM, Romieu C, Bories A (1994) Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol 41:359–365

    Article  CAS  Google Scholar 

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 59:1513–1533

    CAS  Google Scholar 

  • Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H (2005) A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-d-gluconic acid. Appl Microbiol Biotechnol 66:668–674

    Article  CAS  Google Scholar 

  • Gillis M, de Ley J (1980) Intra - and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 30:7–27

    Article  CAS  Google Scholar 

  • Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3:445–456

    CAS  PubMed  Google Scholar 

  • Hall AN (1963) Miscellaneous oxidative transformations. In: Rainbow C, Rose AH (eds) Biochemistry of industrial microorganisms. Academic Press, London, p 607

    Google Scholar 

  • Hekmat D, Bauer R, Fricke J (2003) Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng 26:109–116

    Article  CAS  Google Scholar 

  • Herrmann U, Sahm H (2005) Application of Gluconobacter oxydans for biotechnologically relevant reactions. In: Durán EM, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost 37/661(2), Trivandrum, pp 163–180

  • Holst O, Lundbäck H, Mattiasson B (1985) Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone. Appl Microbiol Biotechnol 22:383–388

    Article  CAS  Google Scholar 

  • Keliang G, Dongzhi W (2006) Asymmetric oxidation by Gluconobacter oxydans. Appl Microbiol Biotechnol 70:135–139

    Article  Google Scholar 

  • Kulakova AN, Kulakov LA, Akulenko NV, Ksenzenko VN, Hamilton JT, Quinn JP (2001) Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F. J Bacteriol 183:3268–3275

    Article  CAS  Google Scholar 

  • Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valin. Appl Environ Microbiol 69:2521–2532

    Article  CAS  Google Scholar 

  • Löw R, Rausch T (1994) Sensitive, nonradioactive northern blots using alkaline transfer of total RNA and PCR-amplified biotinylated probes. Biotechniques 17:1027–1030

    Google Scholar 

  • Matsushita K, Toyoma H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  CAS  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-Keto-d-gluconate production is catalysed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966

    Article  CAS  Google Scholar 

  • Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H (2006a) Modification of the membrane-bound glucose oxidation system in Gluconobacteroxydans significantly increases gluconate and 5-keto-d-gluconic acid accumulation. Biotechnol J 1:556–563

    Article  CAS  Google Scholar 

  • Merfort M, Herrmann U, Bringer-Meyer S, Sahm H (2006b) High-yield 5-keto-d-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl Microbiol Biotechnol 73:443–451

    Article  CAS  Google Scholar 

  • Ming YZ, Di X, Gomez-Sanchez EP, Gomez-Sanchez CE (1994) Improved downward capillary transfer for blotting of DNA and RNA. Biotechniques 16:58–59

    CAS  PubMed  Google Scholar 

  • Pepplar HJ, Perlman D (eds) (1979) Microbial technology, 2nd edn, vol II. Academic Press, London

    Google Scholar 

  • Prust C (2004) Entschlüsselung des Genoms von Gluconobacter oxydans 621H-einem Bakterium von industriellem Interesse. Ph.D. thesis, Georg-August Universität, Göttingen

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  Google Scholar 

  • SaitoY, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning genes coding for l-sorbose and l-sorbosone dehydrogenase from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460

    Article  Google Scholar 

  • Saito Y, Ishii Y, Hayashi H, Yoshikawa K, Noguchi Y, Yoshida S, Soeda S, Yoshida M (1998) Direct fermentation of 2-keto-l-gulonic acid in recombinant Gluconobacter oxydans. Biotechnol Bioeng 58:309–315

    Article  CAS  Google Scholar 

  • Salusjärvi T, Povelainen M, Hvorslev N, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Neustroev KN, Kalkkinen N, Miasnikov AN (2004) Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 65:306–314

    Article  Google Scholar 

  • Schedel M (2000) Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. In: Kelly DR (eds) Biotransformations I. Biotechnology, vol 8b. Wiley-VCH, Weinheim, pp 296–308

    Google Scholar 

  • Svitel J, Sturdik E (1994) Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J Ferment Technol 78:351–355

    Article  CAS  Google Scholar 

  • Tkac J, Navratil M, Sturdik E, Gemeiner P (2001) Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme Microb Technol 28:383–388

    Article  CAS  Google Scholar 

  • Wei S, Song Q, Wei D (2007) Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Prep Biochem Biotechnol 37:67–76

    Article  CAS  Google Scholar 

  • Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285

    Article  CAS  Google Scholar 

  • Wethmar M, Deckwer WD (1999) Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans. Biotechnol Tech 13:283–287

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Armin Ehrenreich and Marc Hoffmeister for the provision of the G. oxydans microarrays and a large number of excellent suggestions during the establishment of G. oxydans microarray analysis in our lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Herrmann.

Additional information

Dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gätgens, C., Degner, U., Bringer-Meyer, S. et al. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol 76, 553–559 (2007). https://doi.org/10.1007/s00253-007-1003-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1003-z

Keywords

Navigation