Skip to main content
Log in

Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A 5-ketogluconate (5-KGA)-forming membrane quinoprotein, gluconate dehydrogenase, was isolated from Gluconobacter suboxydans strain IFO 12528 and partially sequenced. Partial sequences of five internal tryptic peptides were elucidated by mass spectrometry and used to isolate the two adjacent genes encoding the enzyme (EBI accession no. AJ577472). These genes share close homology with sorbitol dehydrogenase from another strain of G. suboxydans (IFO 3255). Substrate specificity of gluconate 5-dehydrogenase (GA 5-DH) turned out to be quite broad, covering many polyols, amino derivatives of carbohydrates, and simple secondary alcohols. There is a broad correlation between the substrate specificity of GA 5-DH and the empirical Bertrand-Hudson rule that predicts the specificity of oxidation of polyols by acetic acid bacteria. Escherichia coli transformed with the genes encoding gluconate dehydrogenase were able to convert gluconic acid into 5-KGA at 75% yield. Furthermore, it was found that 5-KGA can be converted into tartaric acid semialdehyde by a transketolase. These results provide a basis for designing a direct fermentation-based process for conversion of glucose into tartaric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anthony C (1996) Quinoprotein-catalysed reactions. Biochem J 329:697–711

    Google Scholar 

  • Dixon M, Webb EC (1979) Enzymes, 3rd edn. Longman, London

  • Duine JA, Frank J, Van Zeeland JK (1979) Glucose dehydrogenase from Acinetobacter calcoaceticus. FEBS Lett 108:443–446

    Article  CAS  PubMed  Google Scholar 

  • Fleche G (1998) Process for the manufacture of xylaric acid and uses thereof. US Patent 5 731 467

  • Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80

    Google Scholar 

  • Hamacher K (1984) Phase-transfer catalysed synthesis of 4-S-β-d-glucopyranosyl-4-thio-d-glucopyranose (thiocellobiose) and 2-S-β-d-glucopyranosyl-2-thio-d-glucopyranose (thiosophorose). Carbohydr Res 128:291–295

    Article  CAS  Google Scholar 

  • Hibino T, Misawa S, Wakiyama M, Maeda S, Yazaki K, Kumigai I, Ooi T, Miura K (1994) High-level expression of porcine muscle adenylate kinase in Escherichia coli: effects of the copy number of the gene and the translational initiation signals. J Biotechnol 32:139–148

    Article  CAS  PubMed  Google Scholar 

  • Klasen R, Bringer-Mayer S, Sahm H (1995) Biochemical and sequence analysis of the gluconate: NADP 5-oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 177:2637–2643

    CAS  PubMed  Google Scholar 

  • Kotera U, Umehara K, Kodama T, Yamada K (1972) Isolation method of highly tartaric acid producing mutants of Gluconobacter suboxydans. Agric Biol Chem 36:1307–1313

    CAS  Google Scholar 

  • Kulhanék M (1989) Microbial dehydrogenations of monosaccharides. Adv Appl Microbiol 34:141–182

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-Keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Matzerath I, Kläui W, Klasen R, Sahm H (1995) Vanadate catalysed oxidation of 5-keto-d-gluconic acid: the unexpected effect of carbonate and phosphate on rate and selectivity. Inorg Chim Acta 1995:203–205

    Article  Google Scholar 

  • Miasnikov A, Jacobsen TA (2003) Production of tartaric acid. UK Patent application GB 2 388 368

  • Miyazaki T, Tomiyama N, Shinjoh M, Hishino T (2002) Molecular cloning and functional expression of d-sorbitol dehydrogenase from G. suboxydans IFO 3255, which requires quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270

    CAS  PubMed  Google Scholar 

  • Pigman W, Horton D (eds) (1972) The carbohydrates. Chemistry and biochemistry, vol 1A. Academic, New York, p 172

  • Poutanen M, Salusjärvi L, Ruohonen L, Penttilä L, Kalkkinen N (2001) Use of matrix-assisted laser desorption/ionization time-of-flight mass mapping and nanospray liquid chromatography/electrospray ionization tandem mass spectrometry sequence tag analysis for high sensitivity identification of yeast proteins separated by two-dimensional gel electrophoresis. Rapid Commun Mass Spectrom 15:1685–1692

    Article  CAS  PubMed  Google Scholar 

  • Povelainen M, Eneyskaya EV, Kulminskaya AA, Ivanen DR, Kalkkinen N, Neustroev KN, Miasnikov AN (2003) Biochemical and genetic characterisation of a novel enzyme of pentitol metabolism: d-arabitol-phosphate dehydrogenase. Biochem J 371:191–197

    Article  CAS  PubMed  Google Scholar 

  • Rooij JFM de (1984) Process for preparing 4-hydroxy-5-methyl-2,3-dihydrofuranone-3 and changing organoleptic properties of food. US Patent 4 464 409

  • Saito K, Morita S, Kasai Z (1984) Synthesis of l-tartaric acid from 5-keto-d-gluconic acid in Pelargonium. Plant Cell Physiol 25:1223–1232

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Savel’ev AN, Eneyskaya EV, Isaeva-Ivanova LS, Shabalin KA, Golubev AM, Neustroev KN (1997) The carbohydrate moiety of alpha-galactosidase from Trichoderma reesei. Glycoconj J 14:897–905

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1982) Purification and characterisation of d-sorbitol dehydrogenase form membrane of Gluconobacter suboxydans var α. Agric Biol Chem 46:135–141

    CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Toyama H, Adachi O (1983) Selective production of 5-keto-d-gluconate by Gluconobacter strains. J Ferment Technol 61:359–363

    CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Toyama H, Adachi O (1999) Production of 5-keto-d-gluconate by acetic acid bacteria is catalysed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound gluconate dehydrogenase. J Mol Catal B 6:341–350

    CAS  Google Scholar 

  • Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound d-sorbitol-dehydrogenase from G. suboxydans IFO 3255. Biosci Biotechnol Biochem 66:57–64

    CAS  PubMed  Google Scholar 

  • Truesdell SJ, Sims J, Boerman P, Seymour J, Lazarus RA (1991) Pathways for metabolism of ketoaldonic acids in an Erwinia sp. J Bacteriol 173:6651–6656

    CAS  PubMed  Google Scholar 

  • Weenk G, Olijve W, Harder W (1984) Ketogluconate formation by Gluconobacter species. Appl Microbiol Biotechnol 20:400–405

    CAS  Google Scholar 

  • Wood WA, Fetting RQA, Hertlein BC (1962) Gluconic dehydrogenase from Pseudomonas fluorescens. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 5. Academic, New York, pp 287–291

  • Yum DY, Lee YP, Pan JG (1997) Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. J Bacteriol 179:6566–6572

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are due to Maija Karhunen and Gunilla Rönnholm for excellent technical assistance. We also thank Birgitte Ronnow, Tove Christensen, Ida Hildén, Maja Bojko and Thomas Jacobsen for stimulating discussions. We are indebted to Vijay Kumar for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Miasnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salusjärvi, T., Povelainen, M., Hvorslev, N. et al. Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 65, 306–314 (2004). https://doi.org/10.1007/s00253-004-1594-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1594-6

Keywords

Navigation