Skip to main content
Log in

Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gene encoding a Baeyer–Villiger monooxygenase (BVMO) identified in Pseudomonas fluorescens DSM 50106 was cloned and functionally expressed in Escherichia coli JM109. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis showed an estimated 56 kDa-size protein band corresponding to the recombinant enzyme. Expression in BL21 (DE3) resulted mainly in the formation of inclusion bodies. This could be overcome by coexpression of molecular chaperones, especially the DnaK/DnaJ/GrpE complex, leading to increased production of soluble BVMO enzyme in recombinant E. coli. Examination of the substrate spectra using whole-cell biocatalysis revealed a high specificity of the BVMO for aliphatic open-chain ketones. Thus, octyl acetate, heptyl propionate, and hexyl butyrate were quantitatively formed from the corresponding ketone substrates. Several other esters were obtained in conversion >68%. Selected esters were also produced on preparative scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds, vol 13. Marcel Dekker, New York, pp 89–129

    Google Scholar 

  • Britton LN, Markovetz AJ (1977) A novel ketone monooxygenase from Pseudomonas cepacia. J Biol Chem 252:8561–8566

    CAS  PubMed  Google Scholar 

  • Brzostowicz PC, Blasko MS, Rouviere PE (2002) Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl Microbiol Biotechnol 58:781–789

    Article  CAS  Google Scholar 

  • Brzostowicz PC, Walters DM, Thomas SM, Nagarajan V, Rouviere PE (2003) mRNA differential display in a microbial enrichment culture: simultaneous identification of three cyclohexanone monooxygenases from three species. Appl Environ Microbiol 69:334–342

    Article  CAS  Google Scholar 

  • Carrea G, Redigolo B, Riva S, Colonna S, Gaggero N, Battistel E, Bianchi D (1992) Effects of substrate structure on the enantioselectivity and stereochemical course of sulfoxidation catalyzed by cyclohexanone monooxygenase. Tetrahedron: Asymmetry 3:1063–1068

    Article  CAS  Google Scholar 

  • de Gonzalo G, Torres Pazmino DE, Ottolina G, Fraaije MW, Carrea G (2006) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron: Asymmetry 17:130–135

    Article  Google Scholar 

  • Donoghue NA, Norris DB, Trudgill PW (1976) The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem 63:175–192

    Article  CAS  Google Scholar 

  • Fraaije MW, Kamerbeek NM, van Berkel WJH, Janssen DB (2002) Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Lett 518:43–47

    Article  CAS  Google Scholar 

  • Fraaije MW, Kamerbeek NM, Heidekamp AJ, Fortin R, Janssen DB (2004) The prodrug activator EtaA from Mycobacterium tuberculosis is a Baeyer–Villiger monooxygenase. J Biol Chem 279:3354–3360

    Article  CAS  Google Scholar 

  • Fraaije MW, Wu J, Heuts DPHM, van Hellemond EW, Spelberg JHL, Janssen DB (2005) Discovery of a thermostable Baeyer–Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol 66:393–400

    Article  CAS  Google Scholar 

  • Gagnon R, Grogan G, Levitt MS, Robets SM, Wan PWH, Willetts AJ (1994) Biological Baeyer–Villiger oxidation of some monocyclic and bicyclic ketones using monooxygenases from Acinetobacter calcoaceticus NCIMB 9871 and Pseudomonas putida NCIMB 10007. J Chem Soc Perkin Trans 1:2537–2543

    Article  Google Scholar 

  • Griffin M, Trudgill PW (1976) Purification and properties of cyclopentanone oxygenase of Pseudomonas NCIB 9872. Eur J Biochem 63:199–209

    Article  CAS  Google Scholar 

  • Grogan G, Roberts S, Willetts A (1992) Biotransformations by microbial Baeyer–Villiger monooxygenases stereoselective lactone formation in vitro by coupled enzyme systems. Biotechnol Lett 14:1125–1130

    Article  CAS  Google Scholar 

  • Grogan G, Roberts S, Wan P, Willetts AJ (1993) Camphor-grown Pseudomonas putida, a multifunctional biocatalyst for undertaking Baeyer–Villiger monooxygenase-dependent biotransformations. Biotechnol Lett 15:913–918

    Article  CAS  Google Scholar 

  • Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    Article  CAS  Google Scholar 

  • Hildebrandt P, Musidlowska A, Bornscheuer UT (2002) Cloning, functional expression and biochemical characterization of a stereoselctive alcohol dehydrogeenase from Pseudomonas fluorescens DSM50106. Appl Microbiol Biotechnol 59:483–487

    Article  CAS  Google Scholar 

  • Ikura K, Kokubu T, Natsuka S, Ichikawa A, Adachi M, Nishihara K, Yanagi H, Utsumi S (2002) Co-overexpression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Prep Biochem Biotechnol 32:189–205

    Article  CAS  Google Scholar 

  • Jones KH, Smith RT, Trudgill PW (1993) Diketocampane enantiomer-specific ‘Baeyer–Villiger’ monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J Gen Microbiol 139:797–805

    Article  CAS  Google Scholar 

  • Kamerbeek NM, Mooen MJH, van der Ven JGM, van Berkel WJH, Fraaije MW, Janssen DB (2001) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. Eur J Biochem 268:2547–2557

    Article  CAS  Google Scholar 

  • Kamerbeek NM, Olsthoorn JJ, Fraaije MW, Janssen DB (2003) Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl Environ Microbiol 69:419–426

    Article  CAS  Google Scholar 

  • Khalameyzer V, Fischer I, Bornscheuer UT, Altenbuchner J (1999) Screening, nucleotide sequence and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity toward lactones. Appl Environ Microbiol 65:477–482

    Article  CAS  Google Scholar 

  • Kostichka K, Thomas SM, Gibson KJ, Nagarajan V, Cheng Q (2001) Cloning and characterization of a gene cluster for cyclododecanone oxidation in Rhodococcus ruber SC1. J Bacteriol 183:6478–6486

    Article  CAS  Google Scholar 

  • Kyte BG, Rouviere PE, Cheng Q, Stewart JD (2004) Assessing the substrate selectivities and enantioselectivities of eight novel Baeyer–Villiger monooxygenases toward alkyl-substituted cyclohexanones. J Org Chem 69:12–17

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 27:680–685

    Article  Google Scholar 

  • Lee DH, Kim MD, Lee WH, Kweon DH, Seo JH (2004) Consortium of fold-catalyzing proteins increases soluble expression of cyclohexanone monooxygenase in recombinant Escherichia coli. Appl Microbiol Biotechnol 63:549–552

    Article  CAS  Google Scholar 

  • Malito E, Alfieri A, Fraaije MW, Mattevi A (2004) Crystal structure of a Baeyer–Villiger monooxygenase. Proc Natl Acad Sci USA 101:13157–13162

    Article  CAS  Google Scholar 

  • Mihovilovic MD, Müller B, Stanetty P (2002) Monooxygenase-mediated Baeyer–Villiger oxidations. Eur J Org Chem:3711–3730

    Article  Google Scholar 

  • Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar polen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699

    Article  CAS  Google Scholar 

  • Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  CAS  Google Scholar 

  • Pasta P, Carrea G, Gaggero N, Grogan G, Willets A (1996) Enantioselective oxidations catalyzed by diketocamphene monooxygenase from Pseudomonas putida with macromolecular NAD in a membrane reactor. Biotechnol Lett 18:1123–1128

    Article  CAS  Google Scholar 

  • Saenger W (1980) Cyclodextrin-Einschlussverbindungen in Forschung und Industrie. Angew Chem 92:343–361

    Article  CAS  Google Scholar 

  • Stewart JD (1998) Cyclohexanone monooxygenase: a useful reagent for asymmetric Baeyer–Villiger reactions. Curr Org Chem 2:211–232

    Google Scholar 

  • Stumpp T, Wilms B, Altenbuchner J (2000) Ein neues, L-Rhamnose-induzierbares Expressionssystem für Escherichia coli. BIOspektrum 6:33–36

    CAS  Google Scholar 

  • Tanner A, Hopper DJ (2000) Conversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeyer–Villiger-type monooxygenase. J Bacteriol 182:6565–6569

    Article  CAS  Google Scholar 

  • Taylor DG, Trudgill PW (1986) Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J Bacteriol 165:489–497

    Article  CAS  Google Scholar 

  • Trudgill PW (1984) Microbial degradation of the alicyclic ring. In: Gibson DT (ed) Microbial degradation of organic compounds, vol 13. Marcel Dekker, New York, pp 131–180

    Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003a) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol Rev IFP 58:427–440

    Article  Google Scholar 

  • van Beilen JB, Mourlane, Seeger MA, Kovac J, Li Z, Smits THM, Fritsche U, Witholt B (2003b) Cloning of Baeyer–Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Environ Microbiol 5:174–182

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Fonds der Chemischen Industrie (Frankfurt, Germany) and the Studienstiftung des Deutschen Volkes (Bonn, Germany) for stipends to Anett Kirschner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe T. Bornscheuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirschner, A., Altenbuchner, J. & Bornscheuer, U.T. Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli . Appl Microbiol Biotechnol 73, 1065–1072 (2007). https://doi.org/10.1007/s00253-006-0556-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0556-6

Keywords

Navigation