Skip to main content
Log in

Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, the production of 9-(nonanoyloxy) nonanoic acid from oleic acid was investigated. The whole cell biotransformation of oleic acid includes OhyA (hydratase), ADH (alcohol dehydrdogenase), and BVMO (Baeyer-Villiger Monooxygenase) enzymes consecutively. BVMOs are known to catalyze oxidative cleavage of long chain aliphatic ketones (e.g., 2-decanone, 10-ketooctadecanoic acid). However, the enzymes are difficult to overexpress in a soluble form in microorganisms. Thereby, this study has focused on screening and functional expression of the BVMOs in Escherichia coli. Initially BVMOs were selected by protein sequence analysis and were examined for their ability to express in soluble and active form to generate 9-(nonanoyloxy)nonanoic acid from oleic acid. Secondly various optimization strategies of inducer concentrations, co-expression with molecular chaperones, and different media conditions were investigated. Among the 9 BVMOs screened, three BVMOs were found to produce the target product and among these, Di_BVMO3 isolated from Dietzia sp. D5 was found to be best. Further, the soluble expression of Di_BVMO3 was enhanced by adding phosphoglycerate kinase as N-terminal fusion tag. The whole cell biotransformation with fusion enzyme resulted in 3 ~ 5-fold enhancement in product formation compared with the non-fusion counterpart. Final productivity up to 105.3 mg/L was achieved. Besides Di-BVMO3, other two new BVMOs of Rh_BVMO4 from Rhodococcus sp. RHA1 and AFL838 from Aspergillus flavus NRRL3357 were screened for production of 9-(nonanoyloxy)nonanoic acid and could be used for whole cell biotransformation reaction of other long chain ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renz, M. and B. Meunier (1999) 100 years of Baeyer–Villiger oxidations. Europ. J. Organic Chem. 1999: 737–750.

    Article  Google Scholar 

  2. ten Brink, G. J., I. W. C. E. Arends, and R. A. Sheldon (2004) The Baeyer−Villiger reaction: New developments toward greener procedures. Chem. Rev. 104: 4105–4124.

    Article  CAS  PubMed  Google Scholar 

  3. Torres Pazmiño, D. E., H. M. Dudek, and M. W. Fraaije (2010) Baeyer–Villiger monooxygenases: Recent advances and future challenges. Curr. Opin. Chem. Biol. 14: 138–144.

    Article  CAS  PubMed  Google Scholar 

  4. Kamerbeek, N. M., D. B. Janssen, W. J. H. van Berkel, and M. W. Fraaije (2003) Baeyer–Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts. Adv. Synth. Catal. 345: 667–678.

    Article  CAS  Google Scholar 

  5. Oh, H. -J., S. -U. Kim, J. -W. Song, J. -H. Lee, W. -R. Kang, Y. -S. Jo, K. -R. Kim, U. T. Bornscheuer, D. -K. Oh, and J. -B. Park (2015) Biotransformation of linoleic acid into hydroxy fatty acids and carboxylic acids using a linoleate double bond hydratase as key enzyme. Adv. Synth. Catal. 357: 408–416.

    Article  CAS  Google Scholar 

  6. Schörken, U. and P. Kempers (2009) Lipid biotechnology: Industrially relevant production processes. Europ. J. Lipid Sci. Technol. 111: 627–645.

    Article  CAS  Google Scholar 

  7. Seo, J. -H., H. -H. Kim, E. -Y. Jeon, Y. -H. Song, C. -S. Shin, and J. -B. Park (2016) Engineering of Baeyer-Villiger monooxygenasebased Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid. Scientific Rep. 6: 28223.

    Article  CAS  Google Scholar 

  8. Seo, J. H., S. M. Lee, J. Lee, and J. B. Park (2015) Adding value to plant oils and fatty acids: Biological transformation of fatty acids into omega-hydroxycarboxylic, alpha,omega-dicarboxylic, and omega-aminocarboxylic acids. J. Biotechnol. 216: 158–166.

    Article  CAS  PubMed  Google Scholar 

  9. Song, J. W., J. Lee, U. T. Bornscheuer, and J. B. Park (2014) Microbial synthesis of medium-chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long-chain fatty acids. Adv. Synth. Catal. 356: 1782–1788.

    Article  CAS  Google Scholar 

  10. Koppireddi, S., J. -H. Seo, E. -Y. Jeon, P. S. Chowdhury, H. -Y. Jang, J. -B. Park, and Y. -U. Kwon (2016) Combined biocatalytic and chemical transformations of oleic acid to ω-hydroxynonanoic acid and α,ω-nonanedioic acid. Adv. Synth. Catal. 358: 3084–3092.

    Article  CAS  Google Scholar 

  11. Jang, H. -Y., K. Singha, H. -H. Kim, Y. -U. Kwon, and J. -B. Park (2016) Chemo-enzymatic synthesis of 11-hydroxyundecanoic acid and 1,11-undecanedioic acid from ricinoleic acid. Green Chem. 18: 1089–1095.

    Article  CAS  Google Scholar 

  12. Jeon, E. -Y., J. -H. Seo, W. -R. Kang, M. -J. Kim, J. -H. Lee, D. -K. Oh, and J. -B. Park (2016) Simultaneous enzyme/wholecell biotransformation of plant oils into C9 carboxylic acids. ACS Catal. 6: 7547–7553.

    Article  CAS  Google Scholar 

  13. Song, J. -W., E. -Y. Jeon, D. -H. Song, H. -Y. Jang, U. T. Bornscheuer, D. -K. Oh, and J. -B. Park (2013) Multistep enzymatic synthesis of long-chain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angewandte Chem. Internat. Ed. 52: 2534–2537.

    Article  CAS  Google Scholar 

  14. Rehdorf, J., A. Kirschner, and U. T. Bornscheuer (2007) Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol. Lett. 29: 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  15. Kirschner, A., J. Altenbuchner, and U. T. Bornscheuer (2007) Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Appl. Microbiol. Biotechnol. 73: 1065–1072.

    Article  CAS  PubMed  Google Scholar 

  16. Baek, A. H., E. -Y. Jeon, S. -M. Lee, and J. -B. Park (2015) Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer–Villiger monooxygenase. Biotechnol. Bioeng. 112: 889–895.

    Article  CAS  PubMed  Google Scholar 

  17. Song, J. W., J. M. Woo, G. Y. Jung, U. T. Bornscheuer, and J. B. Park (2016) 3'-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli. Sci. Rep. 6: 29406.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferroni, F. M., M. S. Smit, and D. J. Opperman (2014) Functional divergence between closely related Baeyer-Villiger monooxygenases from Aspergillus flavus. J. Mol. Catal. B: Enz. 107: 47–54.

    Article  CAS  Google Scholar 

  19. Riebel, A., H. M. Dudek, G. de Gonzalo, P. Stepniak, L. Rychlewski, and M. W. Fraaije (2012) Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl. Microbiol. Biotechnol. 95: 1479–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Philo, J. S. and T. Arakawa (2009) Mechanisms of protein aggregation. Curr. Pharma. Biotechnol. 10: 348–351.

    Article  CAS  Google Scholar 

  21. Morris, A. M., M. A. Watzky, and R. G. Finke (2009) Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. Biochim. Biophys. Acta (BBA) - Proteins and Proteomics. 1794: 375–397.

    Article  CAS  Google Scholar 

  22. Lebendiker, M. and T. Danieli (2014) Production of prone-toaggregate proteins. FEBS Lett. 588: 236–246.

    Article  CAS  PubMed  Google Scholar 

  23. Martínez-Alonso, M., E. García-Fruitós, N. Ferrer-Miralles, U. Rinas, and A. Villaverde (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microbial. Cell Factories 9: 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rehdorf, J., C. L. Zimmer, and U. T. Bornscheuer (2009) Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1. Appl. Environ. Microbiol. 75: 3106–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Riebel, A., G. de Gonzalo, and M. W. Fraaije (2013) Expanding the biocatalytic toolbox of flavoprotein monooxygenases from Rhodococcus jostii RHA1. J. Mol. Catal. B: Enz. 88: 20–25.

    Article  CAS  Google Scholar 

  26. Song, J. -A., D. -S. Lee, J. -S. Park, K. -Y. Han, and J. Lee (2012) The N-domain of Escherichia coli phosphoglycerate kinase is a novel fusion partner to express aggregation-prone heterologous proteins. Biotechnol. Bioeng. 109: 325–335.

    Article  CAS  PubMed  Google Scholar 

  27. Iwaki, H., Y. Hasegawa, S. Wang, M. M. Kayser, and P. C. K. Lau (2002) Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-Monooxygenase. Appl. Environ. Microbiol. 68: 5671–5684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Gonzalo, G., D. E. Torres Pazmiño, G. Ottolina, M. W. Fraaije, and G. Carrea (2006) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron: Asymm. 17: 130–135.

    Article  CAS  Google Scholar 

  29. Bisagni, S., J. Smuś, G. Chávez, R. Hatti-Kaul, and G. Mamo (2014) Cloning and expression of a Baeyer–Villiger monooxygenase oxidizing linear aliphatic ketones from Dietzia sp. D5. J. Mol. Catal. B: Enzy. 109: 161–169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Young Choi.

Electronic supplementary material

12257_2017_295_MOESM1_ESM.pdf

Screening, Expression, and Characterization of Baeyer-Villiger Monooxygenases for the Production of 9-(nonanoyloxy)nonanoic Acid from Oleic Acid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudheer, P.D.V.N., Yun, J., Chauhan, S. et al. Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid. Biotechnol Bioproc E 22, 717–724 (2017). https://doi.org/10.1007/s12257-017-0295-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0295-9

Keywords

Navigation