Skip to main content
Log in

Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed at increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting NADH oxidation from adenosine triphosphate (ATP)-production pathway (oxidative phosphorylation pathway) to non-ATP production pathway (fermentative pathway). Two respiratory-deficient mutants, RD-17 and RD-18, were screened and selected after ethidium bromide (EtBr) mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, cytochrome aa 3 and b in electron transfer chain (ETC) of RD-18 and cytochrome b in RD-17 were disrupted. As a consequence, the activities of key ETC enzymes of the mutant RD-18, including F0F1-ATP synthase, complex I, complex I + III, complex II + III, and complex IV, decreased by 22.2, 41.6, 53.1, 23.6, and 84.7%, respectively. With the deficiency of cytochromes in ETC, a large amount of excessive cytosolic NADH was accumulated, which hampered the further increase of the glycolytic flux. An exogenous electron acceptor, acetaldehyde, was added to the strain RD-18 culture to oxidize the excessive NADH. Compared with the parent strain, the concentration of pyruvate and the glucose consumption rate of strain RD-18 were increased by 26.5 and 17.6%, respectively, upon addition of 2.1 mM of acetaldehyde. The strategy for increasing the glycolytic flux in T. glabrata by redirecting the NADH oxidation pathway may provide an alternative approach to enhance the glycolytic flux in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aust A, Yun SL, Suelter CH (1975) Pyruvate kinase from yeast (Saccharomyces cerevisiae). Methods Enzymol 42:176–182

    Article  CAS  Google Scholar 

  • Bakker BM, Bro C, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    Article  CAS  Google Scholar 

  • Barber A, Henningsson M, Pamment N (2002) Acceleration of high gravity yeast fermentations by acetaldehyde addition. Biotechnol Lett 24(11):891–895

    Article  CAS  Google Scholar 

  • Barnard EA (1975) Hexokinase from yeast. Methods Enzymol 42:6–20

    Article  CAS  Google Scholar 

  • Beauvoit B, Rigoulet M, Bunoust O, Raffard G, Canioni P, Guerin B (1993) Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. J Biochem 329:51–54

    Google Scholar 

  • Boumans H, Grivell LA, Berden JA (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem 273:4872–4877

    Article  CAS  Google Scholar 

  • Bulder CJ (1964) Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeast. J Microbiol 30:1–9

    CAS  Google Scholar 

  • Davies SE, Brindle KM (1992) Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry 31:4729–4735

    Article  CAS  Google Scholar 

  • De V, Marres CA (1987) The mitochondrial respiratory chain of yeast: structure and biosynthesis and the role in cellar metabolism. Biochim Biophys Acta 895:205–239

    Article  Google Scholar 

  • Deken De (1966) The crabtree effect and its relation to the petite mutation. J Gen Microbiol 44:157–165

    Article  Google Scholar 

  • Dietzler DN, Leckie MP, Magnani JL (1975) Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli: II. Quantitative correlation of the inhibition of glycogen synthesis and the stimulation of glucose utilization by 2,4-dinitrophenol with the effects on the cellular levels of glucose 6-phosphate, fructose, 1,6-diphosphate, and total adenylates. J Biol Chem 250(18):7195–7203

    CAS  PubMed  Google Scholar 

  • Flikweert MT (1999) Physiological roles of pyruvate decarboxylase in Saccharomyces cerevisiae. Ph.D. thesis, Delft University of Technology, Delft

  • Huang M, Biggs DR, Linnane AW (1966) Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae. Biochim Biophys Acta 114:434–436

    Article  CAS  Google Scholar 

  • Hynne F, Dano S, Sorensen PG (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94:121–163

    Article  CAS  Google Scholar 

  • Jensen PR, Michelsen O (1992) Carbon and energy metabolism of ATP synthase mutants of Escherichia coli. J Bacteriol 174:7635–7641

    Article  CAS  Google Scholar 

  • Joseph-Horne T, Hollomon D, Wood P (2001) Fungal respiration: a fusion of standard and alternative components. Biochim Biophys Acta Bioenerg 1504:179–195

    Article  CAS  Google Scholar 

  • Kerschner SJ, Okun JG, Brandt U (1999) A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci 112:2347–2354

    Google Scholar 

  • Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916

    Article  CAS  Google Scholar 

  • Krebs A, Bridger W (1976) On the monomeric structure and proposed regulatory properties of phosphoenolpyruvate carboxykinase of Escherichia coli. Can J Biochem 54:22–26

    Article  CAS  Google Scholar 

  • Larsson C, Pahlman I, Gustafsson L (2000) The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast 16:797–809

    Article  CAS  Google Scholar 

  • Li Y, Chen J, Lun SY, Rui XS (2001) Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biotechnol 55(6):680–685

    Article  CAS  Google Scholar 

  • Liu LM, Li Y, Li HZ, Chen J (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett Appl Microbiol 39(2):199–206

    Article  CAS  Google Scholar 

  • Liu LM, Li Y, Li HZ, Chen J (2005) Effect of oxidative phosphorylation inhibitors on the glycolytic flux in Torulopsis glabrata. Prog Biochem Biophys 32(3):251–257

    CAS  Google Scholar 

  • Maiorella B, Blanch H, Wilke C (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25:103–121

    Article  CAS  Google Scholar 

  • Miseta A, Tokes-Fuzesi M, Aiello D, Bedwell D (2003) A Saccharomyces cerevisiae mutant unable to convert glucose to glucose-6-phosphate accumulates excessive glucose in the endoplasmic reticulum due to core oligosaccharide trimming. Eukaryot Cell 2(3):534–541

    Article  CAS  Google Scholar 

  • O’connor RM, Mcarthur CR (1976) Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 mum. J Bacteriol 126(2):959–968

    Article  Google Scholar 

  • Overkamp K, Bakker B, Kotter P, van Tuijl A, de Vries S, van Dijken J, JT P (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823–2830

    Article  CAS  Google Scholar 

  • Santana M, Ionescu MS, Vertes A, Longin R, Kunst F, Danchin A, Glaser P (1994) Bacillus subtilis F0F1-ATP synthase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176(22):6802–6811

    Article  CAS  Google Scholar 

  • Sato K, Yoshida Y, Hirahata T (2000) On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. J Biosci Bioeng 90:294–301

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    CAS  Google Scholar 

  • Sekine H, Shimada T, Hayashi C (2001) H+–ATP synthase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57:534–540

    Article  CAS  Google Scholar 

  • Senior AE (1988) ATP synthesis by oxidative phosphorylation. Physiol Rev 68(1):177–231

    Article  CAS  Google Scholar 

  • Small WC, McAlister-Henn H (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J Bacteriol 180:4051–4055

    Article  CAS  Google Scholar 

  • Stanley PE (1986) Extraction of adenosine triphosphate from microbial and somatic acid. Methods Enzymol 133:14–22

    Article  CAS  Google Scholar 

  • Stanley G, Douglas E, Every E, Tzanatos T, Pamment N (1993) Inhibition and stimulation of yeast growth by acetaldehyde. Biotechnol Lett 15:1199–1204

    Article  CAS  Google Scholar 

  • Stanley G, Hobley T, Pamment N (1997) Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks. Biotechnol Bioeng 53:71–78

    Article  CAS  Google Scholar 

  • Van Dijken J, Scheffers W (1986) Redox balances in the metabolism of sugars by yeast. FEMS Microbiol Rev 32:199–224

    Article  Google Scholar 

  • Wills C, Martin T (1980) Alteration in the redox balance of yeast leads to allyl alcohol resistance. FEBS Lett 119:105–108

    Article  CAS  Google Scholar 

  • Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F (1994) Pyruvic acid production by an F1-ATP synthase-defective mutant of Escherichia coli W1485lip2. Biosci Biotechnol Biochem 58(12):2164–2167

    Article  CAS  Google Scholar 

  • Yokota A, Henmi M, Takaoka N (1997) Enhancement of glucose metabolism in pyruvic acid-hyperproducing Escherichia coli mutant defective in F1-ATP synthase activity. J Ferment Bioeng 83:132–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support by the Natural Science Foundation of Jiangsu Province of China (contract No. BK2002072); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China; the Ph.D. Programs Foundation of Ministry of Education of China (No. 20040294003); and the Post-graduate Innovation Program of Jiangsu Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Li, Y., Du, G. et al. Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production. Appl Microbiol Biotechnol 72, 377–385 (2006). https://doi.org/10.1007/s00253-005-0284-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0284-3

Keywords

Navigation