Skip to main content
Log in

The genome sequence and insights into the immunogenetics of the bananaquit (Passeriformes: Coereba flaveola)

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Avian genomics, especially of non-model species, is in its infancy relative to mammalian genomics. Here, we describe the sequencing, assembly, and annotation of a new avian genome, that of the bananaquit Coereba flaveola (Passeriformes: Thraupidae). We produced ∼30-fold coverage of the genome with an assembly size of ca. 1.2 Gb, including approximately 16,500 annotated genes. Passerine birds, such as the bananaquit, are commonly infected by avian malarial parasites (Haemosporida), which presumably drive adaptive evolution of immunogenetic loci within the host genome. In the context of our research on the distribution of avian Haemosporida, we specifically characterized immune loci, including toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. Additionally, we identified novel molecular markers in the form of single nucleotide polymorphisms (SNPs), both genome-wide and within identified immune loci. We discovered nine TLR genes and four MHC genes and identified five other TLR- or MHC- associated genes. Genome-wide, over 6 million high-quality SNPs were annotated, including 568 within TLR genes and 102 in MHC genes. This newly described genome and immune characterization expands the knowledge base for avian genomics and phylogenetics and allows for immune genotyping in the bananaquit, providing tools for the investigation of host-parasite coevolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcaide M, Edwards SV (2011) Molecular evolution of the Toll-like receptor multigene family in birds. Molecular biology and evolution 28:1703-1715

  • Balakrishnan CN, Ekblom R, Volker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt DW, Graves T, Griffin DK, Warren WC, Edwards SV (2010) Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 8:29. doi:10.1186/1741-7007-8-29

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellemain E, Bermingham E, Ricklefs RE (2008) The dynamic evolutionary history of the bananaquit (Coereba flaveola) in the Caribbean revealed by a multigene analysis. BMC Evol Biol 8:240. doi:10.1186/1471-2148-8-240

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512-518. doi:10.1038/329512a0

  • Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genome Biol 13:R56. doi:10.1186/gb-2012-13-6-r56

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourlet Y, Behar G, Guillemot F, Frechin N, Billault A, Chausse AM, Zoorob R, Auffray C (1988) Isolation of Chicken Major Histocompatibility Complex Class Ii (B-L) Beta-Chain Sequences - Comparison with Mammalian Beta-Chains and Expression in Lymphoid Organs. Embo J 7:1031-1039

  • Brownlie R, Allan B (2011) Avian toll-like receptors. Cell Tissue Res 343:121–130. doi:10.1007/s00441-010-1026-0

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196. doi:10.1101/gr.6743907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92. doi:10.4161/fly.19695

    Article  CAS  Google Scholar 

  • Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C (2009) The avian Toll-like receptor pathway—subtle differences amidst general conformity. Dev Comp Immunol 33:967–973. doi:10.1016/j.dci.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  • DeWoody J, Abts K, Fahey A, Ji Y, Kimble S, Marra N, Wijayawardena B, Willoughby J (2013) Of contigs and quagmires: next-generation sequencing pitfalls associated with transcriptomic studies. Mol Ecol Resour 13:551–558. doi:10.1111/1755-0998.12107

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128. doi:10.1002/cyto.a.10013

    Article  Google Scholar 

  • Doyle JM, Katzner TE, Bloom PH, Ji Y, Wijayawardena BK, DeWoody JA (2014) The genome sequence of a widespread apex predator, the golden eagle (Aquila chrysaetos). PLoS One 9:e95599

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo T, Ikeo K, Gojobori T (1996) Large-scale search for genes on which positive selection may operate. Mol Biol Evol 13:685–690

    Article  CAS  PubMed  Google Scholar 

  • Fortin A, Stevenson MM, Gros P (2002) Susceptibility to malaria as a complex trait: big pressure from a tiny creature. Hum Mol Genet 11:2469–2478. doi:10.1093/hmg/11.20.2469

    Article  CAS  PubMed  Google Scholar 

  • Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y, Toyoshima K, Seya T (2001) Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J Biol Chem 276:47143-47149. doi:10.1074/jbc.M103902200

  • Gallego C, Golenbock D, Gomez MA, Saravia NG (2011) Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infect Immun 79:2871–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential and host–parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol 15:451–462. doi:10.1046/j.1420-9101.2002.00402.x

    Article  Google Scholar 

  • Gregory TR (2015) Animal Genome Size Database

  • Gremme G, Steinbiss S, Kurtz S (2013) GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinform 10:645–656. doi:10.1109/TCBB.2013.68

    Article  PubMed  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075. doi:10.1046/j.1365-294x.1998.00389.x

    Article  CAS  PubMed  Google Scholar 

  • Grueber CE, Knafler GJ, King TM, Senior AM, Grosser S, Robertson B, Weston KA, Brekke P, Harris CLW, Jamieson IG (2015) Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conserv Genet 16:595–611. doi:10.1007/s10592-014-0685-x

    Article  CAS  Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi:10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds: scaling up and taking a genomic approach to the major histocompatibility complex (MHC) of birds reveals surprising departures from generalities found in mammals in both large-scale structure and the mechanisms shaping the evolution of the MHC. Bioscience 52:423–431. doi:10.1641/0006-3568(2002)052[0423:teotmh]2.0.co;2

    Article  Google Scholar 

  • Hickson RE, Cann RL (1997) Mhc allelic diversity and modern human origins. J Mol Evol 45:589–598

    Article  CAS  PubMed  Google Scholar 

  • Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common west African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  CAS  PubMed  Google Scholar 

  • Holt C, Yandell M (2011) MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinf 12:491. doi:10.1186/1471-2105-12-491

    Article  Google Scholar 

  • Hughes AL (1992) Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol Biol Evol 9:381–393

    CAS  PubMed  Google Scholar 

  • Hughes M, Hughes A (1995) Natural selection on Plasmodium surface proteins. Mol Biochem Parasitol 71:99–113

    Article  CAS  PubMed  Google Scholar 

  • Hughes CR, Miles S, Walbroehl JM (2008) Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class IIB gene. Immunogenetics 60:219–231. doi:10.1007/s00251-008-0287-1

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, DeWoody JA (2016) Genomic landscape of long terminal repeat retrotransposons (LTR-RTs) and solo LTRs as shaped by ectopic recombination in chicken and zebra finch. J Mol Evol 82:251–263. doi:10.1007/s00239-016-9741-0

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. doi:10.1093/bioinformatics/btu031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman J, Volk H, Wallny HJ (1995) A minimal-essential-Mhc and an unrecognized-Mhc—2 extremes in selection for polymorphism. Immunol Rev 143:63–88. doi:10.1111/j.1600-065X.1995.tb00670.x

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217-219

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struc Biol 11:725–732. doi:10.1016/S0959-440x(01)00266-4

    Article  CAS  Google Scholar 

  • Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC (2005) Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (gpi) structural requirement, and regulation of GPI activity. J Biol Chem 280:8606–8616

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388:621–625

    Article  CAS  PubMed  Google Scholar 

  • Lamichhaney S, Berglund J, Almen MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerova M, Rubin CJ, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375. doi:10.1038/nature14181

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18. doi:10.1186/2047-217X-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald MR, Xia J, Smith AL, Magor KE (2008) The duck toll like receptor 7: genomic organization, expression and function. Mol Immunol 45:2055–2061. doi:10.1016/j.molimm.2007.10.018

    Article  CAS  PubMed  Google Scholar 

  • Marcais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. doi:10.1093/bioinformatics/btr011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May RM, Anderson R (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Lond Ser B Biol Sci 219:281–313

    Article  CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki Y, Hume DA (2003) A guide to the mammalian genome—commentary. Genome Res 13:1267–1272. doi:10.1101/gr.1445603

    Article  CAS  Google Scholar 

  • Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067. doi:10.1093/bioinformatics/btm071

    Article  CAS  PubMed  Google Scholar 

  • Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK, Bumstead N, Young J, Smith AL (2005) Identification and characterization of a functional, alternatively spliced toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114:507–521. doi:10.1111/j.1365-2567.2005.02125.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Yan B, Chen S, Chen H, Wang M, Jia R, Zhu D, Liu M, Liu F, Yang Q, Sun K, Wu Y, Chen X, Jing B, Cheng A (2016) CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection. Immunobiology 221:454-461. doi:10.1016/j.imbio.2015.11.005

  • Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119

    Article  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. doi:10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanov MN, Tuttle EM, Houck ML, Modi WS, Chemnick LG, Korody ML, Mork EM, Otten CA, Renner T, Jones KC (2009) The value of avian genomics to the conservation of wildlife. BMC Genomics 10:S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato A, Figueroa F, Mayer WE, Grant PR, Grant BR, Klein J (2000) Mhc class II genes of Darwin’s finches: divergence by point mutations and reciprocal recombination. Major Histocompatibility Complex:518–541

  • Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5:e1000605. doi:10.1371/journal.pcbi.1000605

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H, Campbell M, Tan H, Huff CD, Hu H, Vickrey AI, Nielsen SC, Stringham SA, Hu H, Willerslev E, Gilbert MT, Yandell M, Zhang G, Wang J (2013) Genomic diversity and evolution of the head crest in the rock pigeon. Science 339:1063-1067. doi:10.1126/science.1230422

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123. doi:10.1101/gr.089532.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit AFA, Hubley R (2015) RepeatModeler Open-1.0 2008–2015

  • Smit AFA, Hubley R, Green P (2015) RepeatMasker Open-4.0 2013–2015. Institute for Systems Biology. http://repeatmasker.org

  • Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19(Suppl 2):ii215–ii225

    Article  PubMed  Google Scholar 

  • Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17. doi:10.1093/nar/gkr245

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  • Vicedomini R, Vezzi F, Scalabrin S, Arvestad L, Policriti A (2013) GAM-NGS: genomic assemblies merger for next generation sequencing. BMC Bioinf 14(Suppl 7):S6. doi:10.1186/1471-2105-14-S7-S6

    Article  Google Scholar 

  • Waltari E, Edwards SV (2002) Evolutionary dynamics of intron size, genome size, and physiological correlates in archosaurs. Am Nat 160:539–552. doi:10.1086/342079

    Article  PubMed  Google Scholar 

  • Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von Schantz T, Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. Proc R Soc B Biol Sci 272:1511–1518

    Article  CAS  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (2000) Mhc diversity in two passerine birds: no evidence far a minimal essential Mhc. Immunogenetics 52:92–100. doi:10.1007/s002510000256

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Robertson JS, Schulze SR, Feltus FA, Magrini V, Morrison JA, Mardis ER, Wilson RK, Peterson DG, Paterson AH, Ivarie R (2005) The repetitive landscape of the chicken genome. Genome Res 15:126–136. doi:10.1101/gr.2438004

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijayawardena BK, Minchella DJ, DeWoody JA (2013) Hosts, parasites, and horizontal gene transfer. Trends Parasitol 29:329–338. doi:10.1016/j.pt.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  • Wright NA, Gregory TR, Witt CC (2014) Metabolic ‘engines’ of flight drive genome size reduction in birds. Proc R Soc Lond B Biol Sci 281 doi:10.1098/rspb.2013.2780

  • Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Odeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, da Fonseca RR, Alfaro-Nunez A, Schubert M, Orlando L, Mourier T, Howard JT, Ganapathy G, Pfenning A, Whitney O, Rivas MV, Hara E, Smith J, Farre M, Narayan J, Slavov G, Romanov MN, Borges R, Machado JP, Khan I, Springer MS, Gatesy J, Hoffmann FG, Opazo JC, Hastad O, Sawyer RH, Kim H, Kim KW, Kim HJ, Cho S, Li N, Huang Y, Bruford MW, Zhan X, Dixon A, Bertelsen MF, Derryberry E, Warren W, Wilson RK, Li S, Ray DA, Green RE, O’Brien SJ, Griffin D, Johnson WE, Haussler D, Ryder OA, Willerslev E, Graves GR, Alstrom P, Fjeldsa J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y, Yang H, Wang J, Avian Genome C, Jarvis ED, Gilbert MT, Wang J (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320. doi:10.1126/science.1251385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Purdue Genomics Core Facility for the technical advice, Maria Pil from the Ricklefs Lab for the assistance with sample preparation, and members of the DeWoody Lab for the review of this manuscript. Funding was provided to JAD by Purdue through the University Faculty Scholar program and a seed grant from Purdue’s Department of Forestry and Natural Resources and to JA by a fellowship (P200A090324) in the area of Ecological and Environmental Engineering via the Department of Education’s Graduate Assistance in Area of National Need (GAANN) program.

Data management

The filtered sequencing reads, genome assembly, and annotated SNPs are available from NCBI (Bioproject ID: PRJNA353240). The genome annotation and sequences of transcripts and proteins can be found on Dryad (doi 10.5061/dryad.8182t).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Antonides.

Electronic supplementary material

ESM 1

(DOCX 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonides, J., Ricklefs, R. & DeWoody, J.A. The genome sequence and insights into the immunogenetics of the bananaquit (Passeriformes: Coereba flaveola). Immunogenetics 69, 175–186 (2017). https://doi.org/10.1007/s00251-016-0960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0960-8

Keywords

Navigation