Skip to main content
Log in

A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: “U” and “Z/ZE.” However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage “L” because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the α1 domain, (2) a low GC content of the α1 and α2 exons, and (3) an HINLTL motif including a possible glycosylation site in the α3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as “Onmy-LBA-like.” Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, New York, pp 1–53

    Google Scholar 

  • Aoyagi K, Dijkstra JM, Xia C, Denda I, Ototake M, Hashimoto K, Nakanishi T (2002) Classical MHC class I genes composed of highly divergent sequence lineages share a single locus in rainbow trout (Oncorhynchus mykiss). J Immunol 168:260–273

    PubMed  CAS  Google Scholar 

  • Aparicio S et al (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Arnason U, Gullberg A, Janke A, Joss J, Elmerot C (2004) Mitogenomic analyses of deep gnathostome divergences: a fish is a fish. Gene 333:61–70

    Article  PubMed  CAS  Google Scholar 

  • Arratia G (1997) Basal teleosts and teleostean phylogeny. Palaeo-Ichthyol 7:5–168

    Google Scholar 

  • Babbage A (2001) direct submission, GenBank accession no. AL591175

  • Betz UA, Mayer WE, Klein J (1994) Major histocompatibility complex class I genes of the coelacanth Latimeria chalumnae. Proc Natl Acad Sci USA 91:11065–11069

    Article  PubMed  CAS  Google Scholar 

  • Bingulac-Popovic J, Figueroa F, Sato A, Talbot WS, Johnson SL, Gates M, Postlethwait JH, Klein J (1997) Mapping of MHC class I and class II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics 46:129–134

    Article  PubMed  CAS  Google Scholar 

  • Birdsell JA (2002) Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19:1181–1197

    PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA–A2. Nature 329:506–512

    Article  PubMed  CAS  Google Scholar 

  • Braud VM, Allan DS, McMichael AJ (1999) Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol 11:100–108

    Article  PubMed  CAS  Google Scholar 

  • Brosius J (1999) RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238:115–134

    Article  PubMed  CAS  Google Scholar 

  • Bucciarelli G, Bernardi G, Bernardi G (2002) An ultracentrifugation analysis of two hundred fish genomes. Gene 295:153–162

    Article  PubMed  CAS  Google Scholar 

  • Cadavid LF, Hughes AL, Watkins DI (1996) MHC class I-processed pseudogenes in New World primates provide evidence for rapid turnover of MHC class I genes. J Immunol 157:2403–2409

    PubMed  CAS  Google Scholar 

  • Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G (2004) The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA 101:11707–11712

    Article  PubMed  CAS  Google Scholar 

  • Chen WJ, Orti G, Meyer A (2004) Novel evolutionary relationship among four fish model systems. Trends Genet 20:424–431

    Article  PubMed  CAS  Google Scholar 

  • Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra JM, Kollner B, Aoyagi K, Sawamoto Y, Kuroda A, Ototake M, Nakanishi T, Fischer U (2003) The rainbow trout classical MHC class I molecule Onmy-UBA*501 is expressed in similar cell types as mammalian classical MHC class I molecules. Fish Shellfish Immunol 14:1–23

    Article  PubMed  CAS  Google Scholar 

  • Feenstra M, Bakema J, Verdaasdonk M, Rozemuller E, van den Tweel J, Slootweg P, de Weger R, Tilanus M (2000) Detection of a putative HLA-A*31012 processed (intronless) pseudogene in a laryngeal squamous cell carcinoma. Genes Chromosomes Cancer 27:26–34

    Article  PubMed  CAS  Google Scholar 

  • Feral C, Guellaen G, Pawlak A (2001) Human testis expresses a specific poly(A)-binding protein. Nucleic Acids Res 29:1872–1883

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Kasahara M, Shum BP, Salter-Cid L, Taylor E, Du Pasquier L (1993) A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J 12:4385–4396

    PubMed  CAS  Google Scholar 

  • Galtier N, Piganeau G, Mouchiroud D, Duret L (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159:907–911

    PubMed  CAS  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299

    Article  PubMed  CAS  Google Scholar 

  • Goncalves I, Duret L, Mouchiroud D (2000) Nature and structure of human genes that generate retropseudogenes. Genome Res 10:672–678

    Article  PubMed  CAS  Google Scholar 

  • Graser R, Vincek V, Takami K, Klein J (1998) Analysis of zebrafish MHC using BAC clones. Immunogenetics 47:318–325

    Article  PubMed  CAS  Google Scholar 

  • Halaimia-Toumi N, Casse N, Demattei MV, Renault S, Pradier E, Bigot Y, Laulier M (2004) The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF. J Mol Evol 59:747–760

    Article  PubMed  CAS  Google Scholar 

  • Hansen JD, Strassburger P, Thorgaard GH, Young WP, Du Pasquier L (1999) Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, Oncorhynchus mykiss. J Immunol 163:774–786

    PubMed  CAS  Google Scholar 

  • Harrison PM, Zheng D, Zhang Z, Carriero N, Gerstein M (2005) Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 33:2374–2383

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Nakanishi T, Kurosawa Y (1990) Isolation of carp genes encoding major histocompatibility complex antigens. Proc Natl Acad Sci USA 87:6863–6867

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Okamura K, Yamaguchi H, Ototake M, Nakanishi T, Kurosawa Y (1999) Conservation and diversification of MHC class I and its related molecules in vertebrates. Immunol Rev 167:81–100

    Article  PubMed  CAS  Google Scholar 

  • Hirsch F, Germana S, Gustafsson K, Pratt K, Sachs DH, Leguern C (1992) Structure and expression of class II alpha genes in miniature swine. J Immunol 149:841–846

    PubMed  CAS  Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6:559–579

    PubMed  CAS  Google Scholar 

  • Ishikawa S, Kowal C, Cole B, Thomson C, Diamond B (1995) Replacement of N-glycosylation sites on the MHC class II E alpha chain. Effect on thymic selection and peripheral T cell activation. J Immunol 154:5023–6029

    PubMed  CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Joly E, Rouillon V (2006) The orthology of HLA-E and H2-Qa1 is hidden by their concerted evolution with other MHC class I molecules. Biol Direct 1:2

    Article  PubMed  Google Scholar 

  • Katagiri T, Asakawa S, Hirono I, Aoki T, Shimizu N (2000) Genomic bacterial artificial chromosome library of the Japanese flounder Paralichthys olivaceus. Mar Biotechnol 2:571–576

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Asakawa S, Minagawa S, Shimizu N, Hirono I, Aoki T (2001) Construction and characterization of BAC libraries for three fish species; rainbow trout, carp and tilapia. Anim Genet 32:200–204

    Article  PubMed  CAS  Google Scholar 

  • Kaufman JF, Auffray C, Korman AJ, Shackelford DA, Strominger J (1984) The class II molecules of the human and murine major histocompatibility complex. Cell 36:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kiryu I, Dijkstra JM, Sarder RI, Fujiwara A, Yoshiura Y, Ototake M (2005) New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. Fish Shellfish Immunol 18:243–254

    PubMed  CAS  Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    PubMed  CAS  Google Scholar 

  • Krasnov A, Koskinen H, Afanasyev S, Molsa H (2005) Transcribed Tc1-like transposons in salmonid fish. BMC Genomics 6:107

    Article  PubMed  Google Scholar 

  • Kruiswijk CP, Hermsen TT, Westphal AH, Savelkoul HF, Stet RJ (2002) A novel functional class I lineage in zebrafish (Danio rerio), carp (Cyprinus carpio), and large barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains. J Immunol 169:1936–1947

    PubMed  CAS  Google Scholar 

  • Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  • Kuroda N, Naruse K, Shima A, Nonaka M, Sasaki M (2000) Molecular cloning and linkage analysis of complement C3 and C4 genes of the Japanese medaka fish. Immunogenetics 51:117–128

    Article  PubMed  CAS  Google Scholar 

  • Leaver MJ (2001)A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 271:203–214

    Article  PubMed  CAS  Google Scholar 

  • Li P, McDermott G, Strong RK (2002) Crystal structures of RAE-1beta and its complex with the activating immunoreceptor NKG2D. Immunity 16:77–86

    Article  PubMed  CAS  Google Scholar 

  • Long JA (ed) (1995) The rise of fishes: 500 million years of evolution. John Hopkins, London

    Google Scholar 

  • Madden DR (1995) The three-dimensional structure of peptide–MHC complexes. Annu Rev Immunol 13:587–622

    Article  PubMed  CAS  Google Scholar 

  • Matsuo MY, Asakawa S, Shimizu N, Kimura H, Nonaka M (2002) Nucleotide sequence of the MHC class I genomic region of a teleost, the medaka (Oryzias latipes). Immunogenetics 53:930–940

    Article  PubMed  CAS  Google Scholar 

  • McWeeney SK, Valdes AM (1999) Codon usage bias and base composition in MHC genes in humans and common chimpanzees. Immunogenetics 49:272–279

    Article  PubMed  CAS  Google Scholar 

  • Michalova V, Murray BW, Sultmann H, Klein J (2000) A contig map of the Mhc class I genomic region in the zebrafish reveals ancient synteny. J Immunol 164:5296–5305

    PubMed  CAS  Google Scholar 

  • Miska KB, Harrison GA, Hellman L, Miller RD (2002) The major histocompatibility complex in monotremes: an analysis of the evolution of MHC class I genes across all three mammalian subclasses. Immunogenetics 54:381–393

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Fischer U, Dijkstra JM, Hasegawa S, Somamoto T, Okamoto N, Ototake M (2002) Cytotoxic T cell function in fish. Dev Comp Immunol 26:131–139

    Article  PubMed  CAS  Google Scholar 

  • Nasevicius A, Hyatt TM, Hermanson SB, Ekker SC (2000) Sequence, expression, and location of zebrafish frizzled 10. Mech Dev 92:311–314

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS (ed) (1994) Fishes of the world, 3rd edn. Wiley, New York

    Google Scholar 

  • Nicholson AC, Malik SB, Logsdon JM Jr, Van Meir EG (2005) Functional evolution of ADAMTS genes: evidence from analyses of phylogeny and gene organization. BMC Evol Biol 5:11

    Article  PubMed  Google Scholar 

  • Nonaka M, Miyazawa S (2002) Evolution of the initiating enzymes of the complement system. Genome Biol 3:REVIEWS1001.1–1001.5

    Google Scholar 

  • Ohno S (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin Cell Dev Biol 10:517–522

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, Okamura K, McKinney EC, Bartl S, Hashimoto K, Flajnik MF (2000) Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proc Natl Acad Sci USA 97:4712–4717

    Article  PubMed  CAS  Google Scholar 

  • Onozato H (1984) Diploidization of gynogenetically activated salmonid eggs using hydrostatic pressure. Aquaculture 43:91–97

    Article  Google Scholar 

  • Potter TA, Rajan TV, Dick RF 2nd, Bluestone JA (1989) Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, cytotoxic T lymphocytes. Nature 337:73–75

    Article  PubMed  CAS  Google Scholar 

  • Read LR, Raynard SJ, Ruksc A, Baker MD (2004) Gene repeat expansion and contraction by spontaneous intrachromosomal homologous recombination in mammalian cells. Nucleic Acids Res 32:1184–1196

    Article  PubMed  CAS  Google Scholar 

  • Reich DE, Schaffner SF, Daly MJ, McVean G, Mullikin JC, Higgins JM, Richter DJ, Lander ES, Altshuler D (2002) Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 32:135–142

    Article  PubMed  CAS  Google Scholar 

  • Rexroad CE 3rd, Lee Y, Keele JW, Karamycheva S, Brown G, Koop B, Gahr SA, Palti Y, Quackenbush J (2003) Sequence analysis of a rainbow trout cDNA library and creation of a gene index. Cytogenet Genome Res 102:347–354

    Article  PubMed  Google Scholar 

  • Sambrook JG, Russell R, Umrania Y, Edwards YJ, Campbell RD, Elgar G, Clark MS (2002) Fugu orthologues of human major histocompatibility complex genes: a genome survey. Immunogenetics 54:367–380

    Article  PubMed  CAS  Google Scholar 

  • Sambrook JG, Figueroa F, Beck S (2005) A genome-wide survey of major histocompatibility complex (MHC) genes and their paralogues in zebrafish. BMC Genomics 6:152

    Article  PubMed  Google Scholar 

  • Sarder MR, Fischer U, Dijkstra JM, Kiryu I, Yoshiura Y, Azuma T, Kollner B, Ototake M (2003) The MHC class I linkage group is a major determinant in the in vivo rejection of allogeneic erythrocytes in rainbow trout (Oncorhynchus mykiss). Immunogenetics 55:315–324

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Figueroa F, Murray BW, Malaga-Trillo E, Zaleska-Rutczynska Z, Sultmann H, Toyosawa S, Wedekind C, Steck N, Klein J (2000a) Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics 51:108–116

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Sultmann H, Mayer WE, Klein J (2000b) MHC class I gene of African lungfish. Immunogenetics 51:491–495

    Article  PubMed  CAS  Google Scholar 

  • Schmitz J, Churakov G, Zischler H, Brosius J (2004) A novel class of mammalian-specific tailless retropseudogenes. Genome Res 14:1911–1915

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Dijkstra JM, Shimizu S, Watanabe A, Yanagiya K, Kiryu I, Fujiwara A, Nishida-Umehara C, Kaba Y, Hirono I, Yoshiura Y, Aoki T, Inoko H, Kulski JK, Ototake M (2005) Interchromosomal duplication of major histocompatibility complex class I regions in rainbow trout (Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry. Immunogenetics 56:878–893

    Article  PubMed  CAS  Google Scholar 

  • Skuce C (2002) direct submission, GenBank accession no. AL596141

  • Srisapoome P, Ohira T, Hirono I, Aoki T (2004) Cloning, characterization and expression of cDNA containing major histocompatibility complex class I, IIalpha and IIbeta genes of Japanese flounder Paralichthys olivaceus. Fish Sci 70:264–276

    Article  CAS  Google Scholar 

  • Stet RJ, Kruiswijk CP, Saeij JP, Wiegertjes GF (1998) Major histocompatibility genes in cyprinid fishes: theory and practice. Immunol Rev 166:301–316

    Article  PubMed  CAS  Google Scholar 

  • Stet RJ, Kruiswijk CP, Dixon B (2003) Major histocompatibility lineages and immune gene function in teleost fishes: the road not taken. Crit Rev Immunol 23:441–471

    Article  PubMed  CAS  Google Scholar 

  • Suarez CF, Cardenas PP, Llanos-Ballestas EJ, Martinez P, Obregon M, Patarroyo ME, Patarroyo MA (2003) Alpha1 and alpha2 domains of Aotus MHC class I and Catarrhini MHC class Ia share similar characteristics. Tissue Antigens 5:362–373

    Article  Google Scholar 

  • Sultmann H, Mayer WE, Figueroa F, O’hUigin C, Klein J (1993) Zebrafish MHC class II alpha chain-encoding genes: polymorphism, expression, and function. Immunogenetics 38:408–420

    Article  PubMed  CAS  Google Scholar 

  • Sultmann H, Mayer WE, Figueroa F, O’HUigin C, Klein J (1994) Organization of MHC class II B genes in the zebrafish (Brachydanio rerio). Genomics 23:1–14

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto K, Hayashi S, Matsuo MY, Nonaka MI, Kondo M, Shima A, Asakawa S, Shimizu N, Nonaka M (2005) Unprecedented intraspecific diversity of the MHC class I region of a teleost medaka, Oryzias latipes. Immunogenetics 57:420–431

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103:3220–3225

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki G, Oshiro T, Takashima F (1991) Introduction of carp a-globin gene into rainbow trout. Nippon Suisan Gakkaishi 57:819–824

    CAS  Google Scholar 

  • Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by “the promotion of basic research activities for innovative biosciences” funded by Bio-oriented Technology Research Advancement Institution, Japan, and by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas “Comparative Genomics” from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Attila Kumánovics, University of Utah, for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Martinus Dijkstra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Alignment of Onmy-L nucleotide sequences. The depicted Onmy-LAA*0101 sequence is a combination of the 5′RACE cDNA (without intron) and genomic intron 1, the latter added to the figure to allow comparison with the Onmy-LBA-like genes. For Onmy-LBA*0101, Onmy-LCA*0101, Onmy-LDA*0101 and Onmy-LEA*0101 genomic sequences are shown; the depicted Onmy-LCA sequence is an assembly of the full-length Onmy-LCA genomic fragment and its upstream region derived from the Onmy-LEA+Onmy-LCA sequence. LCAtr: For Onmy-LCA*0101 this transcription start point was determined. The depicted Onmy-LDA*0101 fragment (part of the BAC clone) includes sequences upstream of the open reading frame for comparison with Onmy-LCA*0101. The fragment Onmy-LDA*0102 (not shown) was amplified with primers pLDA-L-F1 and pLDA-α2-R1 and differs from the corresponding Onmy-LDA*0101 fragment by having G460 replaced by a T. Amino acids encoded by Onmy-LAA*0101 are shown above the middle nucleotides of codons. Primer sequences used for RT-PCR analysis are underlined and indicated under the alignment. Dashes indicate gaps, asterisks indicate nucleotides that are shared between all the sequences compared in that region, and dots indicate positions that are shared in most of the compared sequences. Stop codons are boxed. Intron positions of Onmy-LAA*0101 correspond to the α1, α2 and α3 borders or are indicated by arrowheads. TM/CY, transmembrane/cytoplasmic region. In addition to point mutations, gene conversion events presumably also contributed to the variation in this gene family: Namely, whereas the α2 regions of Onmy-LBA, Onmy-LCA and Onmy-LDA have comparable similarity indices (80–84% nt identity), the α1 regions of Onmy-LBA and Onmy-LCA are nearly identical (99% nt identity) but different from Onmy-LDA-α1 (83–84% identity) (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijkstra, J.M., Katagiri, T., Hosomichi, K. et al. A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes. Immunogenetics 59, 305–321 (2007). https://doi.org/10.1007/s00251-007-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0198-6

Keywords

Navigation