Skip to main content
Log in

Domestication does not narrow MHC diversity in Sus scrofa

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The Major Histocompatibility Complex (MHC) is a multigene family of outstanding polymorphism. MHC molecules bind antigenic peptides in the peptide-binding region (PBR) that consists of five binding pockets (P). In this study, we compared the genetic diversity of domestic pigs to that of the modern representatives of their wild ancestors, the wild boar, in two MHC loci, the oligomorphic DQA and the polymorphic DRB1. MHC nucleotide polymorphism was compared with the actual functional polymorphism in the PBR and the binding pockets P1, P4, P6, P7, and P9. The analysis of approximately 200 wild boars collected throughout Europe and 120 domestic pigs from four breeds (three pureblood, Pietrain, Leicoma, and Landrace, and one mixed Danbred) revealed that wild boars and domestic pigs share the same levels of nucleotide and amino acid polymorphism, allelic richness, and heterozygosity. Domestication did not appear to act as a bottleneck that would narrow MHC diversity. Although the pattern of polymorphism was uniform between the two loci, the magnitude of polymorphism was different. For both loci, most of the polymorphism was located in the PBR region and the presence of positive selection was supported by a statistically significant excess of nonsynonymous substitutions over synonymous substitutions in the PBR. P4 and P6 were the most polymorphic binding pockets. Functional polymorphism, i.e., the number and the distribution of pocket variants within and among populations, was significantly narrower than genetic polymorphism, indicative of a hierarchical action of selection pressures on MHC loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexandri P, Triantafyllidis A, Papacostas S, Chatzinikos E, Platis P, Papageorgiou N, Larson G, Abatzopoulos T, Triantaphyllidis C (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39:713–732

    Article  Google Scholar 

  • Alves PC, Pinheiro I, Godinho R, Vocente J, Gortazar C, Scandura M (2010) Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biol J Linn Soc Lon 101:797–822, Science 307(5715):1618–21

    Article  Google Scholar 

  • Ando A, Chardon P (2006) Gene organization and polymorphism of the swine major histocompatibility complex. Anim Sci J 77:127–137

    Article  CAS  Google Scholar 

  • Apollonio M, Randi E, Toso S (1988) The systematics of the wild boar (Sus scrofa L.) in Italy. Boll Zool 3:213–221

    Article  Google Scholar 

  • Axtner J, Sommer S (2007) Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 5:417–426

    Article  Google Scholar 

  • Bak EJ, Ishii Y, Omatsu T, Kyuwa S, Hayasaka I, Yoshikawa Y (2005) Sequence analysis of the MHC class II DPB1 gene in chimpanzees (Pan troglodytes). Int J Immunogenet 3:187–192

    Article  Google Scholar 

  • Barbisan F, Savio C, Bertorelle G, Patarnello T, Congiu L (2009) Duplication polymorphism at MHC class II DRB1 locus in the wild boar (Sus scrofa). Immunogenetics 61:145–151

    Article  PubMed  CAS  Google Scholar 

  • Beja-Pereira A, Caramelli D, Lalueza-Fox C, Vernesi C, Ferrand N, Casoli A, Goyache F, Royo LJ, Conti S, Lari M, Martini A, Ouragh L, Magid A, Atash A, Zsolnai A, Boscato P, Triantaphylidis C, Ploumi K, Sineo L, Mallegni F, Taberlet P, Erhardt G, Sampietro L, Bertranpetit J, Barbujani G, Luikart G, Bertorelle G (2006) The origin of European cattle: evidence from modern and ancient DNA. Proc Natl Acad Sci U S A 103:8113–8118

    Article  PubMed  CAS  Google Scholar 

  • Belkhir K (1999) GENETIX, logiciel sous Windows pour la génétique des populations, Laboratoire Génome et Populations, CNRS UPR 9060. Universite´ de Montpellier II, Montpellier (France)

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  PubMed  CAS  Google Scholar 

  • Bondinas GP, Moustakas AK, Papadopoulos GK (2007) The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics 59:539–553

    Article  PubMed  CAS  Google Scholar 

  • Bos DH, Gopurenko D, Williams RN, Dewoody JA (2008) Inferring population history and demography using microsatellites, mitochondrial DNA, and major histocompatibility complex (MHC) genes. Evolution 62:1458–1468

    Article  PubMed  CAS  Google Scholar 

  • Bowen L, Aldridge BM, Gulland F, Woo J, Van Bonn W, DeLong R, Stott JL, Johnson ML (2002) Molecular characterization of expressed DQA and DQB genes in the California sea lion (Zalophus californianus). Immunogenetics 5:332–347

    Article  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas C, Ortiz M, Balbín A, Villaveces JL, Patarroyo ME (2005) Allele effects in MHC–peptide interactions: a theoretical analysis of HLA-DRβ1*0101-HA and HLADRβ1*0401-HA complexes. Biochem Biophys Res Commun 330:1162–1167

    Article  PubMed  Google Scholar 

  • Cárdenas C, Obregón M, Balbín A, Villaveces JL, Patarroyo ME (2007) Wave function analysis of MHC–peptide interactions. J Mol Graph Model 25:605–615

    Article  PubMed  Google Scholar 

  • Chardon P, Renard C, Vaiman M (1999) The major histocompatibility complex in swine. Immunol Rev 167:179–192

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Baxter T, Muir WM, Groenen MA, Schook LB (2007) Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int J Biol Sci 3:153–165

    Article  PubMed  Google Scholar 

  • Clarke B, Kirby DR (1966) Maintenance of histocompatibility complex polymorphisms. Nature 211:999–1000

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fain MA, Zhao T, Kindt TJ (2001) Improved typing procedure for the polymorphic single-copy RLA-DQA gene of the rabbit reveals a new allele. Tissue Antigens 57:332–338

    Article  PubMed  CAS  Google Scholar 

  • Fang M, Larson G, Soares Ribeiro H, Li N, Andersson L (2009) Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet 5:e1000341

    Article  PubMed  Google Scholar 

  • Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L (2000) The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154:1785–1791

    PubMed  CAS  Google Scholar 

  • Glover KA, Grimholt U, Bakke HG, Nilsen F, Storset A, Skaala O (2007) Major histocompatibility complex (MHC) variation and susceptibility to the sea louse Lepeophtheirus salmonis in Atlantic salmon Salmo salar. Dis Aquat Org 76:57–65

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at: http://www2.unil.ch/popgen/softwares/fstat.html. Updated from Goudet 1995

  • Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (1999) Balancing selection and MHC. Genetica 104:3207–3214

    Google Scholar 

  • Hedrick PW, Lee RN, Parker KM (2000) Major histocompatibility complex (MHC) variation in the endangered Mexican wolf and related canids. Heredity 85:617–624

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Lee RN, Garrigan D (2002) Major histocompatibility complex variation in red wolves: evidence for common ancestry with coyotes and balancing selection. Mol Ecol 10:1905–1913

    Article  Google Scholar 

  • Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennet S, Brewster D, McMichael AJ, Greenwood BM (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  PubMed  CAS  Google Scholar 

  • Ho CS, Rochelle ES, Martens GW, Schook LB, Smith DM (2006) Characterization of swine leukocyte antigen polymorphism by sequence-based and PCR-SSP methods in Meishan pigs. Immunogenetics 58:873–882

    Article  PubMed  CAS  Google Scholar 

  • Ho CS, Lunney JK, Lee J-H, Franzo-Romain MH, Martens GW, Rowland RRR, Smith DM (2010) Molecular characterization of swine leucocyte antigen class II genes in outbred pig populations. Anim Genet 41:428–432

    PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  PubMed  CAS  Google Scholar 

  • Hughes A, Yeager M, Carrington M (1996) Peptide binding function and the paradox of HLA disease associations. Immunol Cell Biol 74:444–448

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–123

    Google Scholar 

  • Kanai TH, Tanioka Y, Tanigawa M, Matsumoto Y, Ueda S, Onodera T, Matsumoto Y (1999) Allelic diversity at class II DRB1 and DQB loci of the pig MHC (SLA). Immunogenetics 50:295–300

    Article  PubMed  CAS  Google Scholar 

  • Kijas JHM, Wales R, Törnsten A, Chardon P, Mollet M, Andersson L (1998) Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150:1177–1185

    PubMed  CAS  Google Scholar 

  • Kjǿglum S, Larsen S, Bakke HG, Grimholt U (2006) How specific MHC class I and class II combinations affect disease resistance against infectious salmon anaemia in Atlantic salmon (Salmo salar). Fish Shellfish Immunol 21:431–441

    Article  PubMed  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: From immunogenetics to evolutionary genetics. Annu Rev Genet 41:281–304

    Google Scholar 

  • Klein J, Sato A, Nagl S, O'hUigin C (1998) Molecular transspecies polymorphism. Ann Rev Ecol Syst 29:1–21

    Article  Google Scholar 

  • Köppel C, Knopf L, Ryser M-P, Miserez R, Thür B, Stärk KDC (2007) Serosurveillance for selected infectious disease agents in wild boars (Sus scrofa) and outdoor pigs in Switzerland. Eur J Wildl Res 53:212–220

    Article  Google Scholar 

  • Koutsogiannouli EA, Moutou KA, Sarafidou T, Stamatis C, Mamuris Z (2009a) Detection of hybrids between wild boars (Sus scrofa scrofa) and domestic pigs (Sus scrofa f. domestica) in Greece, using the PCR-RFLP method on melanocortin-1 receptor (MC1R) mutations. Mamm Biol 75:69–73

    Google Scholar 

  • Koutsogiannouli EA, Moutou KA, Sarafidou T, Stamatis C, Spyrou V, Mamuris Z (2009b) Major histocompatibility complex variation at class II DQA locus in the brown hare (Lepus europaeus). Mol Ecol 18:4631–4649

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:1618–1621

    Article  PubMed  CAS  Google Scholar 

  • Lohm J, Grahn M, Langefors A, Andersen O, Storset A, von Schantz T (2002) Experimental evidence for major histocompatibility complex—allele-specific resistance to a bacterial infection. Proc R Soc London Ser B-Biol Sci 269:2029–2033

    Article  CAS  Google Scholar 

  • Luetkemeier ES, Malhi RS, Beever JE, Schook LB (2009) Diversification of porcine MHC class II genes: evidence for selective advantage. Immunogenetics 2:119–129

    Article  Google Scholar 

  • Massei G, Genov P (2000) Il Cinghiale. Calderini Edagricole, Bologna

    Google Scholar 

  • McFarland BJ, Beeson C (2002) Binding interactions between peptides and proteins of the class II major histocompatibility complex. Med Res Rev 22:168–203

    Article  PubMed  CAS  Google Scholar 

  • Meyer D, Thomson G (2001) How selection shapes variation of the human major histocompatibility complex: a review. Ann Hum Genet 65:1–26

    Article  PubMed  CAS  Google Scholar 

  • Murray BW, Michaud R, Bradley N, White BN (1999) Allelic and haplotype variation of major histocompatibility complex class II DRB1 and DQB loci in the St Lawrence beluga (Delphinapterus leucas). Mol Ecol 8:1127–1139

    Article  Google Scholar 

  • Musolf K, Meyer-Lucht Y, Sommer S (2004) Evolution of MHC-DRB class II polymorphism in the genus Apodemus and a comparison of DRB sequences within the family Muridae (Mammalia: Rodentia). Immunogenetics 56:420–426

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(4):18–426

    Google Scholar 

  • Oppelt C, Wutzler R, von Holst D (2010) Characterisation of MHC class II DRB genes in the northern tree shrew (Tupaia belangeri). Immunogenetics 9:613–622

    Article  Google Scholar 

  • Otting N, de Groot NG, Doxiadis GGM, Bontrop RE (2002) Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics 54:230–239

    Article  PubMed  CAS  Google Scholar 

  • Ottova E, Simkova A, Martin JF, Goüy de Bellocq J, Gelnara M, Allienne J-F, Morand S (2005) Evolution and trans-species polymorphism of MHC class IIb genes in cyprinid fish. Fish Shellfish Immunol 18:199–222

    Article  PubMed  CAS  Google Scholar 

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc Natl Acad Sci U S A 95:3714–3719

    Article  PubMed  CAS  Google Scholar 

  • Pokorny I, Sharma R, Goyal SP, Mishra S, Tiedemann R (2010) MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris). Immunogenetics 10:667–679

    Article  Google Scholar 

  • Potts WK, Manning CJ, Wakeland EK (1991) Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352:619–621

    Article  PubMed  CAS  Google Scholar 

  • Rammensee HG, Fried T, Stevanovic S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228

    Article  PubMed  CAS  Google Scholar 

  • Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V, Davoli R, Apollonio M, Bertorelle G (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol 7:1745–1762

    Article  Google Scholar 

  • Scandura M, Iacolina L, Apollonio M (2011) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild X domestic hybridization. Mammal Rev 41:125–137

    Article  Google Scholar 

  • Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 2:439–450

    Google Scholar 

  • Seddon JM, Baverstock PR (2000) Evolutionary lineages of RT1.Ba in the Australian Rattus. Mol Biol Evol 17:768–772

    Article  PubMed  CAS  Google Scholar 

  • Seddon JM, Ellegren H (2002) MHC class II genes in European wolves: a comparison with dogs. Immunogenetics 7:490–500

    Article  Google Scholar 

  • Slade RW, McCallum HI (1992) Overdominant vs. frequency-dependent selection at MHC loci. Genetics 132:861–864

    PubMed  CAS  Google Scholar 

  • Smith TP, Rohrer GA, Alexander LJ, Troyer DL, Kirby-Dobbels KR, Janzen MA, Cornwell DL, Louis CF, Schook LB, Beattie CW (1995) Directed integration of the physical and genetic linkage maps of swine chromosome 7 reveals that the SLA spans the centromere. Genome Res 5:259–271

    Article  PubMed  CAS  Google Scholar 

  • Smith TP, Lunney JK, Ho CS, Martens GW, Ando A, Lee JH, Schook L, Renard C, Chardon P (2005) Nomenclature for factors of the swine leucocyte antigen class II system. Tissue Antigens 66:623–639

    Article  PubMed  CAS  Google Scholar 

  • Surridge AK, van der Loo W, Abrentes J, Carneiro M, Hewitt GM, Esteves PJ (2008) Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60:515–525

    Article  PubMed  CAS  Google Scholar 

  • Takahata N (1993) Allelic genealogy and human evolution. Mol Biol Evol 10:2–22

    PubMed  CAS  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    PubMed  CAS  Google Scholar 

  • Takahata N, Satta Y (1997) Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc Natl Acad Sci U S A 94:4811–4815

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tennessen JA (2005) Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection. J Evol Biol 18:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Thong LM, Choi H, Kwon O-J, Kim J-H, Kim Y-B, Oh J-W, Seo K, Yeom S-C, Lee W-J, Park C (2011) Systematic analysis of swine leucocyte antigen-DRB1 nucleotide polymorphisms using genomic DNA-based high-resolution genotyping and identification of new alleles. Tissue Antigens 77:572–583

    Article  PubMed  CAS  Google Scholar 

  • Van Eijk MJT, Stewart-Haynes JA, Beever JE, Fernando RL, Lewin HA (1992) Development of persistent lymphocytosis in cattle in closely associated with DRB2. Immunogenetics 37:64–68

    Article  PubMed  Google Scholar 

  • Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H, Bertorelle G (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Mol Ecol 3:585–595

    Article  Google Scholar 

  • Vilà C, Seddon J, Ellegren H (2005) Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends Genet 21:214–218

    Article  PubMed  Google Scholar 

  • Xu A, Van Eijk MJT, Park C, Lewin HA (1993) Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukaemia virus. J Immunol 151:6977–6985

    PubMed  CAS  Google Scholar 

  • Yamazaki K, Boyse EA, Mike V, Thaler HT, Mathieson BJ, Abbott J, Boyse J, Zayas ZA, Thomas L (1976) Control of mating preferences in mice by genes in the major histocompatibility complex. J Exp Med 114:1324–1335

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the hunting associations for their help in collecting samples from all over Greece as well as Dr. Chak-Sum (Sam) Ho, Chair of ISAG/IUIS-VIC SLA Nomenclature Committee for his valuable suggestions in allele assignment. Laboratory work was financed by the Postgraduate Courses “Biotechnology—Quality Assessment in Nutrition and the Environment” and “Applications of Molecular Biology—Genetics—Diagnostic Biomarkers” of the Department of Biochemistry and Biotechnology, University of Thessaly, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zissis Mamuris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 90 kb)

ESM 2

(PPT 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moutou, K.A., Koutsogiannouli, E.A., Stamatis, C. et al. Domestication does not narrow MHC diversity in Sus scrofa . Immunogenetics 65, 195–209 (2013). https://doi.org/10.1007/s00251-012-0671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0671-8

Keywords

Navigation