Skip to main content
Log in

Characterisation of MHC class II DRB genes in the northern tree shrew (Tupaia belangeri)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Genes of the major histocompatibility complex (MHC) mainly code for proteins of the immune system of jawed vertebrates. In particular, MHC class I and II cell surface proteins are crucial for the self/non-self discrimination of the adaptive immune system and are the most polymorphic genes in vertebrates. Positive selection, gene duplications and pseudogenes shape the face of the MHC and reflect a highly dynamic evolution. Here, we present for the first time data of the highly polymorphic MHC class II DRB exon 2 of a representative of the mammalian order scandentia, the northern tree shrew Tupaia belangeri. We found up to eight different alleles per individual and determined haplotype constitution by intensively studying their inheritance. The alleles were assigned to four putative loci, all of which were polymorphic. Only the most polymorphic locus was subject to positive selection within the antigen binding sites and only alleles of this locus were transcribed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Andersson G (1998) Evolution of the human HLA-DR region. Front Biosci 3:d739–d745

    CAS  PubMed  Google Scholar 

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    CAS  PubMed  Google Scholar 

  • Archie EA, Henry T, Maldonado JE, Moss CJ, Poole JH, Pearson VR, Murray S, Alberts SC, Fleischer RC (2010) Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics 62:85–100

    Article  CAS  PubMed  Google Scholar 

  • Axtner J, Sommer S (2007) Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59:417–426

    Article  CAS  PubMed  Google Scholar 

  • Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257

    Article  CAS  PubMed  Google Scholar 

  • Becker L, Nieberg C, Jahreis K, Peters E (2009) MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)—consequences for species conservation. Immunogenetics 61:281–288

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  PubMed  Google Scholar 

  • Bontrop RE (2006) Comparative genetics of MHC polymorphisms in different primate species: duplications and deletions. Hum Immunol 67:388–397

    Article  CAS  PubMed  Google Scholar 

  • Borghans JAM, Noest AJ, De Boer RJ (2003) Thymic selection does not limit the individual MHC diversity. Eur J Immunol 33:3353–3358

    Article  CAS  PubMed  Google Scholar 

  • Borghans JAM, Beltman JB, Boer RJ (2004) MHC polymorphism under host-pathogen coevolution. Immunogenetics 55:732–739

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48:137–144

    CAS  PubMed  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) A biological role for the major histocompatibility antigens. Lancet 1:1406–1409

    Article  CAS  PubMed  Google Scholar 

  • Dukkipati VSR, Blair HT, Garrick DJ, Murray A, North P, Zealand N (2006) ‘Ovar-Mhc’-ovine major histocompatibility complex: structure and gene polymorphisms. Genet Mol Res 5:581–608

    CAS  PubMed  Google Scholar 

  • Ellis SA, Ballingall KT (1999) Cattle MHC: evolution in action? Immunol Rev 167:159–168

    Article  CAS  PubMed  Google Scholar 

  • Emmons L (2000) Tupai: a field study of Bornean treeshrews. University of California Press, Berkeley

    Google Scholar 

  • Erlich HA, Bugawan TL (1990) HLA DNA typing. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 261–271

    Google Scholar 

  • Fain MA, Zhao T, Kindt TJ (2001) Improved typing procedure for the polymorphic single-copy RLA-DQA gene of the rabbit reveals a new allele. Tissue Antigens 57:332–338

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Soria VM, Morales P, Castro MJ, Suarez B, Recio MJ, Moreno MA, Paz-Artal E, Arnaiz-Villena A (1998) Transcription and weak expression of HLA-DRB6: a gene with anomalies in exon 1 and other regions. Immunogenetics 48:16–21

    Article  CAS  PubMed  Google Scholar 

  • Figueroa F, O'hUigin C, Tichy H, Klein J (1994) The origin of the primate Mhc-DRB genes and allelic lineages as deduced from the study of prosimians. J Immunol 152:4455–4465

    CAS  PubMed  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91

    Article  CAS  PubMed  Google Scholar 

  • Hauswaldt JS, Stuckas H, Pfautsch S, Tiedemann R (2007) Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina. Immunogenetics 59:479–491

    Article  CAS  PubMed  Google Scholar 

  • Hill AVS, Jepson A, Plebanski M, Gilbert SC (1997) Genetic analysis of host-parasite coevolution in human malaria. Philosophical Transactions of the Royal Society B: Biological Sciences 352:1317–1325

    Article  CAS  Google Scholar 

  • Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC, Wright MW (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  CAS  PubMed  Google Scholar 

  • Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794

    Article  CAS  PubMed  Google Scholar 

  • Kawamichi T, Kawamichi M (1979) Spatial organization and territory of three shrews (Tupaia glis). Anim Behav 27:381–393

    Article  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695

    Article  CAS  PubMed  Google Scholar 

  • Kettaneh A, Seng L, Tiev K, Toledano C, Fabre B, Cabane J (2006) Human leukocyte antigens and susceptibility to tuberculosis: a meta-analysis of case-control studies. Int J Tuberc Lung Dis 10:717–725

    CAS  PubMed  Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    CAS  PubMed  Google Scholar 

  • Kloch A, Babik W, Bajer A, Sinski E, Radwan J (2010) Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol Ecol 19:255–265

    Article  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW (2005) DATAMONKEY: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    Article  Google Scholar 

  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901

    Article  PubMed  Google Scholar 

  • Kupfermann H, Satta Y, Takahata N, Tichy H, Klein J (1999) Evolution of Mhc–DRB introns: implications for the origin of primates. J Mol Evol 48:663–674

    Article  CAS  PubMed  Google Scholar 

  • Lampert KP, Fischer P, Schartl M (2009) Major histocompatibility complex variability in the clonal Amazon molly, Poecilia formosa: is copy number less important than genotype? Mol Ecol 18:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Lukas D, Bradley BJ, Nsubuga AM, Doran-Sheehy D, Robbins MM, Vigilant L (2004) Major histocompatibility complex and microsatellite variation in two populations of wild gorillas. Mol Ecol 13:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Malaga-Trillo E, Zaleska-Rutczynska Z, McAndrew B, Vincek V, Figueroa F, Sultmann H, Klein J (1998) Linkage relationships and haplotype polymorphism among cichlid Mhc class II B loci. Genetics 149:1527–1537

    CAS  PubMed  Google Scholar 

  • Michel C, Bernatchez L, Behrmann-Godel J (2009) Diversity and evolution of MHII β genes in a non-model percid species—the Eurasian perch (Perca fluviatilis L). Mol Immunol 46:3399–3410

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Hughes AL (1991) Polymorphism and evolution of the major histocompatibility complex loci in mammals. In: Evolution at the molecular level. Sinauer Associates Inc., Sunderland, pp 222–247

    Google Scholar 

  • Nei M, Rooney A (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, Tarczy-Hornoch K, Austyn JM (1992) The optimal number of major histocompatibility complex molecules in an individual. Proceedings of the National Academy of Sciences 89:10896–10899

    Article  CAS  Google Scholar 

  • Olson L, Sargis E, Martin R (2005) Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 35:656–673

    Article  CAS  PubMed  Google Scholar 

  • Oommen MA, Shanker K (2008) Ecology and bahaviour of an endemic treeshrew Tupaia nicobarica Zelebor 1869 on great nicobar island. India J Bombay Nat Hist Soc 105:55–63

    Google Scholar 

  • Oppelt C, Starkloff A, Rausch P, von Holst D, Rödel HG (2010) Variation of major histocompatibility complex and age-specific endoparasite load in subadult European rabbits. Molecular Ecology (in press)

  • Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74

    Article  CAS  PubMed  Google Scholar 

  • Reusch TBH, Langefors Å (2005) Inter-and intralocus recombination drive MHC class IIB gene diversification in a teleost, the three-spined stickleback Gasterosteus aculeatus. J Mol Evol 61:531–541

    Article  CAS  PubMed  Google Scholar 

  • Richman AD, Herrera LG, Nash D, Schierup MH (2003) Relative roles of mutation and recombination in generating allelic polymorphism at an MHC class II locus in Peromyscus maniculatus. Genetics Research 82:89–99

    Article  CAS  PubMed  Google Scholar 

  • Sargis E (2004) New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evol Anthropol 13:56–66

    Article  Google Scholar 

  • Sato A, Figueroa F, O’hUigin C, Steck N, Klein J (1998) Cloning of major histocompatibility complex (Mhc) genes from threespine stickleback, Gasterosteus aculeatus. Mol Mar Biol Biotechnol 7:221–231

    CAS  PubMed  Google Scholar 

  • Sawai H, Go Y, Satta Y (2008) Biological implication for loss of function at major histocompatibility complex loci. Immunogenetics 60:295–302

    Article  CAS  PubMed  Google Scholar 

  • Sawyer SA (1999) GENECONV: a computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University, St. Louis

  • Schad J, Sommer S, Ganzhorn JU (2004) MHC variability of a small lemur in the littoral forest fragments of southeastern Madagascar. Conserv Genet 5:299–309

    Article  CAS  Google Scholar 

  • Schaschl H, Suchentrunk F, Hammer S, Goodman SJ (2005) Recombination and the origin of sequence diversity in the DRB MHC class II locus in chamois (Rupicapra spp.). Immunogenetics 57:108–115

    Article  CAS  PubMed  Google Scholar 

  • Sittisombut N, Tissot RG, Knight KL (1989) Rabbit major histocompatibility complex III. Multiple class II DRß genes and restriction frament length polymorphism of the class II α and ß genes. Int J Immunogenet 16:63–75

    CAS  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology 2:16

    Article  PubMed  Google Scholar 

  • Stoffels RJ, Spencer HG (2008) An asymmetric model of heterozygote advantage at major histocompatibility complex genes: degenerate pathogen recognition and intersection advantage. Genetics 178:1473–1489

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • The MHC sequencing consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401:921–923

    Article  Google Scholar 

  • Trowsdale J (1995) “Both man & bird & beast”: comparative organization of MHC genes. Immunogenetics 41:1–17

    Article  CAS  PubMed  Google Scholar 

  • Van Den Bussche RA, Hoofer SR, Lochmiller RL (1999) Characterization of Mhc-DRB allelic diversity in white-tailed deer (Odocoileus virginianus) provides insight into Mhc-DRB allelic evolution within Cervidae. Immunogenetics 49:429–437

    Article  Google Scholar 

  • van Oosterhout C (2009) A new theory of MHC evolution: beyond selection on the immune genes. Proceedings of the Royal Society B: Biological Sciences 276:657–665

    Article  PubMed  Google Scholar 

  • Wegner KM, Kalbe M, Schaschl H, Reusch TBH (2004) Parasites and individual major histocompatibility complex diversity—an optimal choice? Microbes Infect 6:1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Westerdahl H (2007) Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol 148:469–477

    Article  Google Scholar 

  • Yeager M, Hughes AL (1999) Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev 167:45–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Oppelt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 5

Neighbour-joining trees of two segments due to a recombination breakpoint determined with GARD (Pond et al. 2006). The left tree represents the topology of the fragment 1–104 bp, and the right tree the second fragment from 105–171 bp. (DOC 67 kb)

Table 2

Top ten species with Genbank sequence homologs to T. belangeri DRB alleles of the four putative loci. The Genbank database was surveyed for homologies with Blast using the megablast option for highly similar sequences (Altschul et al. 1990). Hits are sorted by the maximum score. (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppelt, C., Wutzler, R. & von Holst, D. Characterisation of MHC class II DRB genes in the northern tree shrew (Tupaia belangeri). Immunogenetics 62, 613–622 (2010). https://doi.org/10.1007/s00251-010-0466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-010-0466-8

Keywords

Navigation