Skip to main content
Log in

Effect of mutation at the interface of Trp-repressor dimeric protein: a steered molecular dynamics simulation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The strength of key interfacial contacts that stabilize protein–protein interactions have been studied by computer simulation. Experimentally, changes in the interface are evaluated by generating specific mutations at one or more points of the protein structure. Here, such an evaluation is performed by means of steered molecular dynamics and use of a dimeric model of tryptophan repressor and in-silico mutants as a test case. Analysis of four particular cases shows that, in principle, it is possible to distinguish between wild-type and mutant forms by examination of the total energy and force–extension profiles. In particular, detailed atomic level structural analysis indicates that specific mutations at the interface of the dimeric model (positions 19 and 39) alter interactions that appear in the wild-type form of tryptophan repressor, reducing the energy and force required to separate both subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16:R65–R92

    Article  CAS  Google Scholar 

  • Balsera M, Stepaniants S, Izrailev S, Oono Y, Schulten K (1997) Reconstructing potential energy functions from simulated force-induced unbinding Processes. Biophys J 73:1281–1287

    Article  PubMed  CAS  Google Scholar 

  • Bayas M, Schulten K, Leckband D (2004) Forced dissociation of the strand dimer interface between C-cadherin ectodomains. Mech Chem Biosyst 1:101–111

    PubMed  CAS  Google Scholar 

  • Best R, Paci E, Hummer G, Dudko O (2008) Pulling direction as a reaction coordinate for the mechanical unfolding of single. J Phys Chem B 112:5968–5976

    Article  PubMed  CAS  Google Scholar 

  • Bogan AS, Thorn KS (1998) Anatomy of Hot spots in protein interfaces. J Mol Biol 1:1–9

    Article  Google Scholar 

  • Carra C, Saha J, Cucinotta FA (2012) Theoretical prediction of the binding free energy for mutants of replication protein A. J Mol Model 18:3035–3049

    Article  PubMed  CAS  Google Scholar 

  • Deulfhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD (eds) (1998) computational molecular dynamics: challenges, methods, ideas, vol 4. Lecture Notes in Computational Science and Engineering. Springer, Berlin

  • Gao Y, Wang R, Lai L (2004) Structure-based method for analyzing protein–protein interfaces. J Mol Model 10:44–54

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez G, Menendez-Proupin E, Loyola C, Peralta J, Davis S (2010) Computer simulation study of amorphous compounds: structural and vibrational properties. J Mater Sci 45:5124–5134

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comp Phys 151:283–312

    Article  CAS  Google Scholar 

  • Kamisetty H, Ramanathan A, Bailey-Kellogg C, Langmead CJ (2011) Accounting for conformational entropy in predicting binding free energies of protein–protein interactions. Proteins 79:444–462

    Article  PubMed  CAS  Google Scholar 

  • Li H, Oberhauser A, Fowler S, Clarke J, Fernandez J (2000) Atomic force microscopy reveals the mechanical design of a modular protein. PNAS 97:6527–6531

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Schulten K (1999) Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins Struct Funct Genet 35:453–463

    Article  PubMed  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher IWE, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Mann C, Matthews CR (1993) Structure and stability of an early folding intermediate of Escherichia coli trp aporepressor measured by far-uv stopped-flow circular-dichroism and 8-anilino-1-naphthalene sulfonate binding. Biochem 32:5282–5290

    Article  CAS  Google Scholar 

  • Royer CA, Mann CJ, Matthews CR (1993) Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci 2:1844–1852

    Article  PubMed  CAS  Google Scholar 

  • Rumfeldt JAO, Galvagnion C, Vassall KA, Meiering EM (2008) Conformational stability and folding mechanisms of dimeric proteins. Prog Biophys Mol Biol 98:61–84

    Article  PubMed  CAS  Google Scholar 

  • Shank E, Cecconi C, Dill J, Marqusee S, Bustamante C (2010) The folding cooperativity of a protein is controlled by its chain topology. Nature 465:637–640

    Article  PubMed  CAS  Google Scholar 

  • Shao X, Hensley P, Matthews CR (1997) Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein. Biochem 36:9941–9949

    Article  CAS  Google Scholar 

  • Shen M, Guan J, Xu L, Yu Y, He J, Jones GW, Song Y (2012) Steered molecular dynamics simulations on the binding of the appendant structure and helix-β2 in domain-swapped human cystation C dimer. J Biomol Struct Dyn 30:652–661

    Article  PubMed  CAS  Google Scholar 

  • Voet D, Voet J (1995) Biochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Zhang RG, Joachimiak A, Lawson CL, Schevitz RW, Otwinowski Z, Sigler PB (1987) The crystal structure of trp aporepressor at 1.8 Å shows how binding tryptophan enhances DNA affinity. Nature 327:591–597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Fondo Nacional de Desarrollo Científico y Tecnologíco, Fondecyt Grants no. 3110149 (GM), 11110534 (MB). GG acknowledges partial support of Fondecyt-Chile 1120603. This work have also been supported by the High-Performance Computing infrastructure of the Center for Mathematical Modeling, University of Chile, via the Project BASAL-CMM. The authors warmly thank Professors Boris Weiss-López and Bruce Kennedy Cassels for their useful insight and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Miño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miño, G., Baez, M. & Gutierrez, G. Effect of mutation at the interface of Trp-repressor dimeric protein: a steered molecular dynamics simulation. Eur Biophys J 42, 683–690 (2013). https://doi.org/10.1007/s00249-013-0918-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0918-9

Keywords

Navigation