Skip to main content
Log in

Steered molecular dynamics simulations of ligand–receptor interaction in lipocalins

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Retinol binding protein (RBP) and an engineered lipocalin, DigA16, have been studied using molecular dynamics simulations. Special emphasis has been placed on explaining the ligand–receptor interaction in RBP–retinol and DigA16–digoxigenin complexes, and steered molecular dynamics simulations of 10–20 ns have been carried out for the ligand expulsion process. Digoxigenin is bound deep inside the cavity of DigA16 and forms several stable hydrogen bonds in addition to the hydrophobic van der Waals interaction with the aromatic side-chains. Four crystalline water molecules inside the ligand-binding cavity remain trapped during the simulations. The strongly hydrophobic receptor site of RBP differs considerably from DigA16, and the main source of ligand attraction comes from the phenyl side-chains. The hydrogen bonds between digoxigenin and DigA16 cause the rupture forces on ligand removal in DigA16 and RBP to differ. The mutated DigA16 residues contribute approximately one-half of the digoxigenin interaction energy with DigA16 and, of these, the energetically most important are residues His35, Arg58, Ser87, Tyr88, and Phe114. Potential “sensor loops” were found for both receptors. These are the outlier loops between residues 114–121 and 63–67 for DigA16 and RBP, respectively, and they are located near the entrance of the ligand-binding cavity. Especially, the residues Glu119 (DigA16) and Leu64 (RBP) are critical for sensing. The ligand binding energies have been estimated based on the linear response approximation of binding affinity by using a previous parametrization for retinoids and RBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Åqvist J, Marelius J (2001) The linear interaction energy method for predicting ligand binding free energies. Comb Chem High Throughput Screen 4:613–626

    PubMed  Google Scholar 

  • Åqvist J, Medina C, Samuelsson J-E (1994) New method for predicting binding-affinity in computer-aided drug design. Protein Eng 7:385–391

    Article  PubMed  Google Scholar 

  • Åqvist J, Luzhkov VB, Brandsdal BO (2002) Ligand binding affinities from MD simulations. Acc Chem Res 35:358–365. doi:10.1021/ar010014p

    Article  PubMed  Google Scholar 

  • Beaufays J et al (2008) Ir-LBP, an Ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS ONE. doi:10.1371/journal.pone.0003987

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Research 28:235–242. (http://www.pdb.org)

  • Besler BH, Merz KM Jr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comp Chem 11:431–439

    Article  CAS  Google Scholar 

  • Breustedt DA, Schönfeld DL, Skerra A (2006) Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 1764:161–173. doi:10.1016/j.bbapap.2005.12.006

    CAS  PubMed  Google Scholar 

  • Calderone V, Berni R, Zanotti G (2003) High-resolution structures of retinol-binding protein in complex with retinol: pH-induced protein structural changes in the crystal state. J Mol Biol 329:841–850. doi:10.1016/S0022-2836(03)00468-6

    Article  CAS  PubMed  Google Scholar 

  • Chau P-L (2004) Water movement during ligand unbinding from receptor site. Biophys J 87:121–128. doi:10.1529/biophysj.103.036467

    Article  CAS  PubMed  Google Scholar 

  • Cogan U, Kopelman M, Mokady S, Shinitzky M (1976) Binding affinities of retinol and related compounds to retinol binding proteins. Eur J Biochem 65:71–78

    Article  CAS  PubMed  Google Scholar 

  • Cowan SW, Newcomer ME, Jones TA (1990) Crystallographic refinement of human serum retinol binding protein at 2 Å resolution. Proteins Struct Funct Genet 8:44–61. doi:10.1002/prot.340080108

    Article  CAS  PubMed  Google Scholar 

  • Duan Y et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012. doi:10.1002/jcc.10349

    Article  CAS  PubMed  Google Scholar 

  • Flower DR (1994) The lipocalin protein family: a role in cell regulation. FEBS Lett 354:7–11

    Article  CAS  PubMed  Google Scholar 

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    CAS  PubMed  Google Scholar 

  • Frisch MJ et al (2004) Gaussian03, Revision D. 02. Gaussian Inc., Wallingford CT

    Google Scholar 

  • Gunnerson KN, Pereverzev YV, Prezhdo OV (2009) Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force. J Phys Chem B 113:2090–2100. doi:10.1021/jp803955u

    Article  CAS  PubMed  Google Scholar 

  • Hansson T, Marelius J, Åqvist J (1998) Ligand binding affinity prediction by linear interaction energy methods. J Comput Aided Mol Design 12:27–35

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—Visual Molecular Dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  • Hytönen VP, Vogel V (2008) How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput Biol. doi:10.1371/journal.pcbi.0040024

  • Inoue K, Yagi N, Urade Y, Inui T (2009) Compact Packing of Lipocalin-type Prostaglandin D Synthase Induced by Binding of Lipophilic Ligands. J Biochem 145:169–175

    Article  CAS  PubMed  Google Scholar 

  • Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graphics Modell 19:13–25

    Article  CAS  Google Scholar 

  • Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struc Biol 11:224–230

    Article  CAS  Google Scholar 

  • Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Article  CAS  Google Scholar 

  • Jarzynski C (1997) Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys Rev E 56:5018–5035

    Article  CAS  Google Scholar 

  • Jeffrey PD, Strong RK, Sieker LC, Chang CY, Campbell RL, Petsko GA, Haber E, Margolies MN, Sheriff S (1993) 26-10 Fab-digoxin complex: affinity and specificity due to surface complementarity. Proc Natl Acad Sci USA 90:10310–10314

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey PD, Schildbach JF, Chang CY, Kussie PH, Margolies MN, Sheriff S (1995) Structure and specificity of the anti-digoxin antibody 40–50. J Mol Biol 248:344–360

    CAS  PubMed  Google Scholar 

  • Korndörfer IP, Schlehuber S, Skerra A (2003) Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J Mol Biol 330:385–396. doi:10.1016/S0022-2836(03)00573-4

    Article  PubMed  Google Scholar 

  • Meijer EJ, Sprik M (1998) Ab initio molecular dynamics study of the reaction of water with formaldehyde in sulfuric acid solution. J Am Chem Soc 120:6345–6355

    Article  CAS  Google Scholar 

  • Mills JL, Liu G, Skerra A, Szyperski T (2009) NMR Structure and Dynamics of the Engineered Fluorescein-Binding Lipocalin FluA Reveal Rigidification of β-Barrel and Variable Loops upon Enthalpy-Driven Ligand Binding. Biochemistry 48:7411–7419. doi:10.1021/bi900535j

    Article  CAS  PubMed  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Cryst D 53:240–255

    Article  CAS  Google Scholar 

  • Newcomer ME, Jones TA, Åqvist J, Sundelin J, Eriksson U, Rask L, Peterson PA (1984) The three-dimensional structure of retinol-binding protein. EMBO J 3:1451–1454

    CAS  PubMed  Google Scholar 

  • Niu C et al (2009) Dynamic mechanism of E2020 binding to acetylcholinesterase: a steered molecular dynamics simulation. J Phys Chem B 109:23730–23738. doi:10.1021/jp0552877

    Article  Google Scholar 

  • Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120:5946–5961. doi:10.1063/1.1651473

    Article  CAS  PubMed  Google Scholar 

  • Peräkylä M (2009) Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. Eur Biophys J 38:185–198. doi:10.1007/s00249-008-0369-x

    Article  PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  • Schlehuber S, Skerra A (2005) Lipocalins in drug discovery: from natural ligand-binding proteins to ‘anticalins’. Drug Discovery Today 10:23–33

    Article  CAS  PubMed  Google Scholar 

  • Schlehuber S, Beste B, Skerra A (2000) A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J Mol Biol 297:1105–1120

    Article  CAS  PubMed  Google Scholar 

  • Schlehuber S, Skerra A (2002) Tuning ligand affinity, specificity, and folding stability of an engineered lipocalin variant—a so-called ‘anticalin’—using a molecular random approach. Biophys Chem 96:213–228

    Article  CAS  PubMed  Google Scholar 

  • Schönfeld D et al (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci USA 106:8198–8203

    Article  PubMed  Google Scholar 

  • Singh RP, Brooks BR, Klauda JB (2008) Binding and release of cholesterol in the Osh4 protein of yeast. Proteins 75:468–477. doi:10.1002/prot.22263

    Article  Google Scholar 

  • Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comp Chem 5:129–145

    Article  CAS  Google Scholar 

  • Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304. doi:10.1016/j.copbio.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  • Skerra A (2008) Alternative binding proteins: Anticalins—harnessing the structural plasticity of the lipocalin pocket to engineer novel binding activities. FEBS J 275:2677–2683. doi:10.1111/j.1742-4658.2008.06439.x

    Article  CAS  PubMed  Google Scholar 

  • Sprik M, Ciccotti G (1998) Free energy from constrained molecular dynamics. J Chem Phys 109:7737–7744

    Article  CAS  Google Scholar 

  • van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen

    Google Scholar 

  • Wang W, Wang J, Kollman PA (1999) What determines the van der Waals coefficient b in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Proteins Struct Funct Genet 34:395–402

    Article  CAS  PubMed  Google Scholar 

  • Zanotti G, Berni R, Monaco HL (1993) Crystal structure of liganded and unliganded forms of bovine plasma retinol-binding protein. J Biol Chem 268:10728–10738

    CAS  PubMed  Google Scholar 

  • Zanotti G, Panzalorto M, Marcato A, Malpeli G, Folli C, Berni R (1998) Structure of pig plasma retinol-binding protein at 1.65 Å resolution. Acta Crystallog D 54:1049–1052

    Article  CAS  Google Scholar 

  • Zanotti G, Calderone V, Beda M, Malpeli G, Folli C, Berni R (2001) Structure of chicken plasma retinol-binding protein. Biochim Biophys Acta 1550:64–69

    Article  CAS  PubMed  Google Scholar 

  • Zwanzig RW (1954) High-temperature equation of state by a perturbation method. 1. nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The parallel simulations were performed on the SGI/Altix platform at the Nanoscience Center of the University of Jyväskylä. The charge calculations with Gaussian03 were performed on the HP CP4000 BL platform at CSC in Espoo, Finland. All molecular visualizations were done with Visual Molecular Dynamics (Humphrey et al. 1996). We thank A. Skerra for discussions and providing the DigA16 structure (1LKE) with an added middle loop (residues 118–122), O. Pentikäinen for instructions with the simulation setups, and R.O. Jones for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Akola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (1662 KB)

Below is the link to the electronic supplementary material.

PDB (460 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalikka, J., Akola, J. Steered molecular dynamics simulations of ligand–receptor interaction in lipocalins. Eur Biophys J 40, 181–194 (2011). https://doi.org/10.1007/s00249-010-0638-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0638-3

Keywords

Navigation