Skip to main content
Log in

An overview of recent developments in the interpretation and prediction of fast internal protein dynamics

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

During the past decades, NMR spectroscopy has emerged as a unique tool for the study of protein dynamics. Indeed, relaxation studies on isotopically labeled proteins can provide information on the overall motions as well as the internal fast, sub-nanosecond, dynamics. Therefore, the interpretation and the prediction of spin relaxation rates in proteins are important issues that have motivated numerous theoretical and methodological developments, including the description of overall dynamics and its possible coupling to internal mobility, the introduction of models of internal dynamics, the determination of correlation functions from experimental data, and the relationship between relaxation and thermodynamical quantities. A brief account of recent developments that have proven useful in this domain are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abergel D, Bodenhausen G (2004) A simple model for NMR relaxation in the presence of internal motions with dynamical coupling. J Chem Phys 121:761

    Article  ADS  Google Scholar 

  • Abergel D, Bodenhausen G (2005) Predicting internal protein dynamics from structures using coupled networks of hindered rotators. J Chem Phys 123:204901

    Article  ADS  Google Scholar 

  • Abragam A (1961) Principles of nuclear magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Akke M, Brüschweiler R, Arthur G Palmer I (1993) NMR order parameters and free energy: an analytical approach and its application to cooperative ca2+ binding by calbindin d 9k . J Am Chem Soc 115:9832–9833

    Article  Google Scholar 

  • Bernado P, de la Torre JG, Pons M (2002) Interpretation of 15N NMR relaxation of globular proteins using hydrodynamic calculations with hydroNMR. J Biomol NMR 23:139–150

    Article  Google Scholar 

  • Blackledge M, Cordier F, Dosset P, Marion D (1998) Precision and uncertainty in the characterization of anisotropic rotational diffusion by 15N relaxation. J Am Chem Soc 120:4538–4539

    Article  Google Scholar 

  • Bremi T, Brüschweiler R (1997) Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation. J Am Chem Soc 119:6672–6673

    Article  Google Scholar 

  • Bremi T, Brüschweiler R, Ernst R (1997) A protocol for the interpretation of side-chain dynamics based on NMR relaxation: Application to phenylalanines in antamanide. J Am Chem Soc 119:4272

    Article  Google Scholar 

  • Brink D, Satchler G (1968) Angular momentum. Clarendon Press, Oxford

    Google Scholar 

  • Brüschweiler R, Liao X, Wright P (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268:886–889

    Article  ADS  Google Scholar 

  • Brüschweiler R, Case DA (1994) Collective NMR relaxation model applied to protein dynamics. Phys Rev Lett 72:940–943

    Article  ADS  Google Scholar 

  • Buck M, Boyd J, Redfield C, MacKenzie D, Jeenes D, Archer D, Dobson C (1995) Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34:4041–4055

    Article  Google Scholar 

  • Carlomagno T, Maurer M, Hennig M, Griesinger C (2000) Ubiquitin backbone motion studied via NHN-C′ Cα dipolar-dipolar and C′–C′Cα/ NHN CSA-dipolar cross-correlation relaxation. J Am Chem Soc 122:5105–5113

    Article  Google Scholar 

  • Case D (2002) Molecular dynamics and NMR spin relaxation in proteins. Acc Chem Res 35:325–331

    Article  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy. Academic, New York

  • Chandrashekar I, Clore GM, Szabo A, Gronenborn A, Brooks B (1992) A 500 ps molecular dynamics simulation study of interleukin-1 beta in water. correlation with nuclear magnetic resonance spectroscopy and crystallography. J Mol Biol 226:239–250

    Article  Google Scholar 

  • Chatfield D, Szabo A, Brooks B (1998) Molecular dynamics of staphylococcal nuclease: comparison of simulation with 15N and 13C NMR relaxation data. J Am Chem Soc 120:5301–5311

    Article  Google Scholar 

  • Clore GM, Driscoll PC, Wingfield P, Gronenborn AM (1990a) Analysis of the backbone dynamics of interleukine-1 beta using two-dimensional inverse detected heteronuclear nitrogen-15-proton NMR spectroscopy. Biochemistry 29:7387–7401

    Article  Google Scholar 

  • Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990b) Deviations from the simple two-parameter model-free approach of the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112:4989–4991

    Article  Google Scholar 

  • Coffey WT, Kalmykov YP, Waldron JT (1996) The Langevin equation. World Scientific, Singapore

    MATH  Google Scholar 

  • Daragan VA, Mayo KH (1997) Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Progr NMR Spectrosc 31:63–105

    Article  Google Scholar 

  • de la Torre JG, Bloomfield V (1981) Hydrodynamic properties of complex, rigid, biological macromolecules—theory and applications. Quart Rev Biophys 14:81–139

    Google Scholar 

  • de la Torre JG, Huertas ML, Carrasco B (2000a) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Article  Google Scholar 

  • de la Torre JG, Huertas ML, Carrasco B (2000b) HydroNMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson 147:138–146

    Article  ADS  Google Scholar 

  • Delarue M, Duclert-Savatier N, Miclet E, Haouz A, Giganti D, Ouazzani J, Lopes P, Nilges M, Stoven V (2007) Three dimensional structure and implications for the catalytic mechanism of 6-phosphogluconolactonase from trypanosoma brucei. J Mol Biol 366:868–881

    Article  Google Scholar 

  • Dhulesia A, Abergel D, Bodenhausen G (2007) Networks of coupled rotators: Relationship between structures and internal dynamics in metal-binding proteins. application to apo- and holo-calbindin. J Am Chem Soc 129:4998–5006

    Article  Google Scholar 

  • Dosset P, Marion D, Blackledge M (2000) Tensor2. Copyright 1999, Institut de Biologie Structurale JP EBEL CEA-CNRS, Laboratoire de Resonance Magnetique nucleaire, Grenoble

  • Edholm O, Blomberg C (1979) Decay of angular-correlation functions by multiple rotational potential diffusion in polymer-chains, with applications to NMR relaxation in paraffin chains of lipid bilayers. Chem Phys 42:449

    Article  Google Scholar 

  • Favro LD (1960) Theory of the rotational brownian motion of a free rigid body. Phys Rev 119:53

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Fischer M, Majumdar A, Zuiderweg E (1998) Protein NMR relaxation: theory, applications and outlook. Prog Nucl Magn Reson 33:207–272

    Article  Google Scholar 

  • Fushman D, Ohlenschläger O, Rüterjans H (1994) Determination of the backbone mobility of ribonuclease t1 and its 2′ GMP complex using molecular dynamics simulations and NMR relaxation data. J Biomol Struct Dyn 4:61–78

    Google Scholar 

  • Fushman D, Xu R, Cowburn D (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in abl sh(32). Biochemistry 38:10225–10230

    Article  Google Scholar 

  • Goldman M (1984) Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J Magn Reson 60:437–452

    Google Scholar 

  • Goodman JL, Pagel MD, Stone MJ (2000) Relationships between protein structure and dynamics from a database of NMR-derived backbone order parameters. J Mol Biol 295:963–978

    Article  Google Scholar 

  • Halle B (2002) Flexibility and packing in proteins. Proc Natl Acad Sci 99:1275–1279

    Article  ADS  Google Scholar 

  • Halle B, Wennerström H (1981) J Chem Phys 75:1928–1943

    Article  ADS  Google Scholar 

  • Huntress WT (1968) Effects of anisotropic molecular rotational diffusion on nuclear magnetic relaxation in liquids. J Chem Phys 48:3524–3533

    Article  ADS  Google Scholar 

  • Idiyatullin D, Daragan V, Mayo K (2004) A simple method to measure (ch2)-C-13 heteronuclear dipolar cross-correlation spectral densities. J Magn Reson 171:4–9

    Article  ADS  Google Scholar 

  • Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106:1672–1699

    Article  Google Scholar 

  • Jarymowicz VA, Stone M (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106:1624–1671

    Article  Google Scholar 

  • Kateb F, Abergel D, Blouquit Y, Duchambon P, Craescu C, Bodenhausen G (2006) Slow backbone dynamics of the C-terminal fragment of human centrin 2 in complex with a target peptide probed by cross-correlated relaxation in multiple-quantum NMR spectroscopy. Biochemistry 45:15011–15019

    Article  Google Scholar 

  • Kloiber K, Konrat R (2000) Differential multiple-quantum relaxation arising from cross-correlated time-modulation of isotropic chemical shifts. J Biomol NMR 18:33

    Article  Google Scholar 

  • Kördel J, Teleman O (1992) Backbone dynamics of calbindin d9k: comparison of molecular dynamics simulations and notrogen-15 NMR relaxation measurements. J Am Chem Soc 114:4934–4936

    Article  Google Scholar 

  • Korzhnev D, Billeter M, Arseniev A, Orekhov V (2001) NMR studies of brownian tumbling and internal motions in proteins. Prog NMR Spectrosc 38:197–266

    Article  Google Scholar 

  • Kroenke CD, Loria JP, Lee LK, Rance M, Palmer AG (1998) Longitudinal and transverse 1H–15N dipolar/15N chemical shift anisotropy relaxation interference: Unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J Am Chem Soc 120:7905–7915

    Article  Google Scholar 

  • Lee LK, Rance M, Chazin WJ, Palmer AG (1997) Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relaxation. J Biomol NMR 9:287–298

    Article  Google Scholar 

  • Lenin F, Bremi T, Brutcher B, Ernst R (1997) Anisotropic intramolecular back-bone dynamics of ubiquitin characterized by NMR relaxation and md computer simulation. J Am Chem Soc 120:9870–9879

    Article  Google Scholar 

  • Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, Chichester

    Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546

    Article  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559

    Article  Google Scholar 

  • London R, Avitabile J (1978) Calculated carbon-13 NMR relaxation parameters for a restricted internal diffusionmodel. application to methionine relaxation in dihydrofolate reductase. J Am Chem Soc 100:7159–7165

    Article  Google Scholar 

  • Mandel AM, Akke M, Palmer III AG (1995) Backbone dynamics of escherichia coli ribonuclease hi: correlations with structure and function in an active enzyme. J Mol Biol 246:144–163

    Article  Google Scholar 

  • Meirovitch E, Polimeno A, Freed JH (2006) Methyl dynamics in proteins from NMR slowly relaxing local structure spin relaxation analysis: a new perspective. J Phys Chem B 110:20615–20628

    Article  Google Scholar 

  • Millet O, Loria JP, Kroenke CD, Pons M, Palmer AG (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J Am Chem Soc 122:2867–2877

    Article  Google Scholar 

  • Millet O, Muhandiram D, Skrynnikov NR, Kay L (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labelled and fractionally 2H-enriched proteins in solution. J Am Chem Soc 124:6439–6448

    Article  Google Scholar 

  • Ming D, Brschweiler R (2004) Prediction of methyl side-chain dynamics in proteins. J Biomol NMR 29:363–368

    Article  Google Scholar 

  • Ming D, Brschweiler R (2006) Reorientational contact-weighted elastic network model for the prediction of protein dynamics: comparison with NMR relaxation. Biophys J 90:3382–3388

    Article  Google Scholar 

  • Palmer AG (2001) Annu Rev Biophys Biomol Struct 30:129

    Article  Google Scholar 

  • Palmer AG, Case D (1992) Molecular dynamics analysis of NMR relaxation in a zinc-finger peptide. J Am Chem Soc 114:9059–9067

    Article  Google Scholar 

  • Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Meth Enzymol 339:204–238

    Google Scholar 

  • Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999a) Efficient determination of angles subtended by Cα – H α and N–HN vectors in proteins via dipole–dipole cross-correlation. J Biomol NMR 13:375–380

    Article  Google Scholar 

  • Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999b) Simultaneous detection of y and f angles in proteins from measurements of cross-correlated relaxation effects. J Biomol NMR 14:277–280

    Article  Google Scholar 

  • Pelupessy P, Ravindranathan S, Bodenhausen G (2003) Correlated motions of successive amide N–H bonds in proteins. J Biomol NMR 25:265–280

    Article  Google Scholar 

  • Perazzolo C, Wist J, Loth K, Poggi L, Homans S, Bodenhausen G (2005) Effects of protein-pheromone complexation on correlated chemical shift modulations. J Biomol NMR 33:233–242

    Article  Google Scholar 

  • Perrin F (1934) Journal de Physique du Radium 5:497–511

    Article  MATH  Google Scholar 

  • Perrin F (1936) Journal de Physique du Radium 7:1–11

    Article  MATH  Google Scholar 

  • Philippopoulos M, Mandel AM, Palmer AG III, Lim C (1997) Accuracy and precision of NMR relaxation experiments and md simulations for characterizing protein dynamics. Proteins Struct Funct Bioinformatics 28:481–493

    Article  Google Scholar 

  • Polimeno A, Freed J (1993) Adv Chem Phys 83:89–163

    Article  Google Scholar 

  • Polimeno A, Freed J (1995) Slow motional ESR in complex fluids—the slowly relaxing local-structure model of solvent cage effects. J Phys Chem 99:10995–11006

    Article  Google Scholar 

  • Prompers J, Brschweiler R (2002) General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and md simulation. J Am Chem Soc 124:4522–4534

    Article  Google Scholar 

  • Redfield AG (1965) Adv Magn Reson 1:1–32

    Google Scholar 

  • Reif B, Diener A, Hennig M, Maurer M, Griesinger C (2000) Cross-correlated relaxation for the measurement of angles between tensorial interactions. J Magn Reson 143:45–68

    Article  ADS  Google Scholar 

  • Reif B, Hennig M, Griesinger C (1997) Direct measurement of angles between bond vectors in high-resolution NMR. Science 276:1230

    Article  Google Scholar 

  • Ryabov YE, Geraghty C, Varshney A, Fushman D (2006) An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation. Journal of the American Chemical Society 128:15432–15444

    Article  Google Scholar 

  • Schmidt JM, Brüschweiler R, Ernst RR, Dunbrack RL, Joseph D, Karplus M (1993) Molecular dynamics simulation of the proline conformational equilibrium and dynamics in antamanide using the charmm force field. J Am Chem Soc 115:8747–8756

    Article  Google Scholar 

  • Schurr JM, Babcock HP, Fujimoto BS (1994) A test of the model-free formulas—effects of anisotropic rotational diffusion and dimerization. J Magn Reson 105 B:211–224

    Google Scholar 

  • Schwalbe H, Carlomagno T, Hennig M, Junker J, Reif B, Richter C, Griesinger C (1997) Methods Enzymol 338:35–81

    Article  Google Scholar 

  • Skrynnikov NR, Millet O, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins 2 spectral density mapping and identification of nanosecond time-scale side-chain motions. J Am Chem Soc 124:6449–6460

    Article  Google Scholar 

  • Tirion M (1997) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905

    Article  ADS  Google Scholar 

  • Torchia D, Szabo A (1982) Spin-lattice relaxation in solids. J Magn Reson 49:107–121

    Google Scholar 

  • Tugarinov V, Liang Z, Shapiro YE, Freed JH, Meirovitch E (2001) A structural mode-coupling approach to 15N NMR relaxation in proteins. J Am Chem Soc 123:3055–3063

    Article  Google Scholar 

  • Tugarinov V, Shapiro YE, Liang Z, Freed JH, Meirovitch E (2002) A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling 15N NMR relaxation. J Mol Biol 315:155

    Article  Google Scholar 

  • Tugarinov V, Shapiro YE, Liang Z, Freed JH, Meirovitch E (2003) Mode coupling srls versus mode-decoupled model-free N–H bond dynamics: mode-mixing and renormalization. J Phys Chem B 107:9898–9904

    Article  Google Scholar 

  • Wand J (2001a) Science 293:U1

  • Wand J (2001b) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8:926–931

    Article  Google Scholar 

  • Werbelow L, Grant D (1975) The dipolar orientational correlation function. J Magn Reson 21:369

    Google Scholar 

  • Wist J, Perazzolo C, Bodenhausen G (2005) Slow motions in nondeuterated proteins: concerted chemical shift modulations of backbone nuclei. Appl Magn Reson 29:251–259

    Article  Google Scholar 

  • Wittebort R, Szabo A (1978) Theory of NMR relaxation in macromolecules: restricted diffusion and jump models for multiple internal rotations in amino acid side chains. J Chem Phys 69:1722–1736

    Article  ADS  Google Scholar 

  • Wittebort R, Szabo A (1985) Influence of vibrational motion on solid state line shapes and NMR relaxation. J Chem Phys 82:4753–4761

    Article  Google Scholar 

  • Woessner DE (1962) Spin relaxation processes in a two-proton system undergoing anisotropic reorientation. J Chem Phys 36:1–4

    Article  ADS  Google Scholar 

  • Yang D, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol 263:369–382

    Article  Google Scholar 

  • Yang D, Mittermaier A, Mok YK, Kay LE (1998) A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J Mol Biol 276:939–954

    Article  Google Scholar 

  • Zhang L, Brüschweiler R (2002) Contact model for the prediction of NMR N–H order parameters in globular proteins. J Am Chem Soc 276:12654–12655

    Article  Google Scholar 

  • Zidek L, Novotny MV, Stone MJ (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol 6:1118–1121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Abergel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nodet, G., Abergel, D. An overview of recent developments in the interpretation and prediction of fast internal protein dynamics. Eur Biophys J 36, 985–993 (2007). https://doi.org/10.1007/s00249-007-0167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0167-x

Keywords

Navigation