Skip to main content
Log in

The Unexplored Wealth of Microbial Secondary Metabolites: the Sphingobacteriaceae Case Study

  • Genes and Genomes
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Research on secondary metabolites (SMs) has been mostly focused on Gram-positive bacteria, especially Actinobacteria. The association of genomics with robust bioinformatics tools revealed the neglected potential of Gram-negative bacteria as promising sources of new SMs. The family Sphingobacteriaceae belongs to the phylum Bacteroidetes having representatives in practically all environments including humans, rhizosphere, soils, wastewaters, among others. Some genera of this family have demonstrated great potential as plant growth promoters, bioremediators and producers of some value-added compounds such as carotenoids and antimicrobials. However, to date, Sphingobacteriaceae’s SMs are still poorly characterized, and likewise, little is known about their chemistry. This study revealed that Sphingobacteriaceae pangenome encodes a total of 446 biosynthetic gene clusters (BGCs), which are distributed across 85 strains, highlighting the great potential of this bacterial family to produce SMs. Pedobacter, Mucilaginibacter and Sphingobacterium were the genera with the highest number of BGCs, especially those encoding the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), terpenes, polyketides and nonribosomal peptides (NRPs). In Mucilaginibacter and Sphingobacterium genera, M. lappiensis ATCC BAA-1855, Mucilaginibacter sp. OK098 (both with 11 BGCs) and Sphingobacterium sp. 21 (6 BGCs) are the strains with the highest number of BGCs. Most of the BGCs found in these two genera did not have significant hits with the MIBiG database. These results strongly suggest that the bioactivities and environmental functions of these compounds, especially RiPPs, PKs and NRPs, are still unknown. Among RiPPs, two genera encoded the production of class I and class III lanthipeptides. The last are associated with LanKC proteins bearing uncommon lyase domains, whose dehydration mechanism deserves further investigation. This study translated genomics into functional information that unveils the enormous potential of environmental Gram-negative bacteria to produce metabolites with unknown chemistries, bioactivities and, more importantly, unknown ecological roles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data is available in open access genomic databases.

Code Availability

The codes of all the software applied in this study are available.

References

  1. Steyn PL, Segers P, Vancanneyt M et al (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. andPedobacter saltans sp. nov. proposal of the family Sphingobac. Int J Syst Bacteriol 48:165–177. https://doi.org/10.1099/00207713-48-1-165

    Article  CAS  PubMed  Google Scholar 

  2. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. https://doi.org/10.1038/nature07540

    Article  CAS  PubMed  Google Scholar 

  3. Ley RE, Lozupone CA, Hamady M et al (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788. https://doi.org/10.1038/nrmicro1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olsen I, Jantzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7:103–112. https://doi.org/10.1006/anae.2001.0376

    Article  CAS  Google Scholar 

  5. Johnson EL, Heaver SL, Waters JL et al (2020) Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun 11:2471. https://doi.org/10.1038/s41467-020-16274-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siddiqi MZ, Liu Q, Kang MS et al (2016) Anseongella ginsenosidimutans gen. nov., sp. nov., isolated from soil cultivating ginseng. Int J Syst Evol Microbiol 66:1125–1130. https://doi.org/10.1099/ijsem.0.000844

    Article  CAS  Google Scholar 

  7. Baik KS, Park SC, Kim EM et al (2010) Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 60:134–139. https://doi.org/10.1099/ijs.0.011130-0

    Article  CAS  PubMed  Google Scholar 

  8. Asker D, Beppu T, Ueda K (2008) Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 58:601–606. https://doi.org/10.1099/ijs.0.65493-0

    Article  CAS  PubMed  Google Scholar 

  9. Ntougias S, Fasseas C, Zervakis GI (2007) Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia. Crete Int J Syst Evol Microbiol 57:398–404. https://doi.org/10.1099/ijs.0.64561-0

    Article  CAS  PubMed  Google Scholar 

  10. Cai Y, Dong W, Hu Y et al (2020) Pararcticibacter amylolyticus gen. nov., sp. nov., isolated from a rotten hemp rope, and reclassification of Pedobacter tournemirensis as Pararcticibacter tournemirensiscomb. nov. Curr Microbiol 77:320–326. https://doi.org/10.1007/s00284-019-01828-z

    Article  CAS  PubMed  Google Scholar 

  11. Covas C, Caetano T, Cruz A et al (2017) Pedobacter lusitanus sp. nov., isolated from sludge of a deactivated uranium mine. Int J Syst Evol Microbiol 67:1339–1348. https://doi.org/10.1099/ijsem.0.001814

    Article  CAS  PubMed  Google Scholar 

  12. Du J, Singh H, Ngo HTT et al (2015) Pedobacter daejeonensis sp. nov. andPedobacter trunci sp. nov., isolated from an ancient tree trunk, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 65:1241–1246. https://doi.org/10.1099/ijs.0.000087

    Article  CAS  PubMed  Google Scholar 

  13. Xia X, Wu S, Han Y et al (2016) Pelobium manganitolerans gen. nov., sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 66:4954–4959. https://doi.org/10.1099/ijsem.0.001451

    Article  CAS  PubMed  Google Scholar 

  14. Cao J, Lai Q, Li G, Shao Z (2014) Pseudopedobacter beijingensis gen. nov., sp. nov., isolated from coking wastewater activated sludge, and reclassification of Pedobacter saltans as Pseudopedobacter saltans comb. nov. Int J Syst Evol Microbiol 64:1853–1858. https://doi.org/10.1099/ijs.0.053991-0

    Article  CAS  PubMed  Google Scholar 

  15. Vaishnav A, Singh J, Singh P et al (2020) Sphingobacterium sp. BHU-AV3 induces salt tolerance in tomato by enhancing antioxidant activities and energy metabolism. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00443

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fan D, Subramanian S, Smith DL (2020) Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Sci Rep 10:12740. https://doi.org/10.1038/s41598-020-69713-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Machado R, Serralheiro R (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  18. Li J, Luo C, Zhang D et al (2019) Diversity of the active phenanthrene degraders in PAH-polluted soil is shaped by ryegrass rhizosphere and root exudates. Soil Biol Biochem 128:100–110. https://doi.org/10.1016/j.soilbio.2018.10.008

    Article  CAS  Google Scholar 

  19. Edmonds-Wilson SL, Nurinova NI, Zapka CA et al (2015) Review of human hand microbiome research. J Dermatol Sci 80:3–12. https://doi.org/10.1016/j.jdermsci.2015.07.006

    Article  PubMed  Google Scholar 

  20. Caporaso JG, Lauber CL, Costello EK et al (2011) Moving pictures of the human microbiome. Genome Biol 12:R50. https://doi.org/10.1186/gb-2011-12-5-r50

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shivaji S (2005) Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088

    Article  CAS  Google Scholar 

  22. Trenozhnikova L, Azizan A (2018) Discovery of Actinomycetes from extreme environments with potential to produce novel antibiotics. Cent Asian J Glob Heal. https://doi.org/10.5195/cajgh.2018.337

    Article  Google Scholar 

  23. Chen R, Wong H, Burns B (2019) New approaches to detect biosynthetic gene clusters in the environment. Medicines 6:32. https://doi.org/10.3390/medicines6010032

    Article  CAS  PubMed Central  Google Scholar 

  24. Sharrar AM, Crits-Christoph A, Méheust R et al (2020) Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. MBio. https://doi.org/10.1128/mBio.00416-20

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lucke M, Correa MG, Levy A (2020) The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobacteria in interactions with plants and microbes. Front Plant Sci. https://doi.org/10.3389/fpls.2020.589416

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mewalal R, Rai DK, Kainer D et al (2017) Plant-derived terpenes: a feedstock for specialty biofuels. Trends Biotechnol 35:227–240. https://doi.org/10.1016/j.tibtech.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  27. Martínez-Núñez MA, y López VEL (2016) Nonribosomal peptides synthetases and their applications in industry. Sustain Chem Process 4:1–8. https://doi.org/10.1186/s40508-016-0057-6

    Article  CAS  Google Scholar 

  28. Marques APGC, Pires C, Moreira H et al (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014

    Article  CAS  Google Scholar 

  29. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304. https://doi.org/10.1016/j.pbi.2006.03.014

    Article  CAS  PubMed  Google Scholar 

  30. Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160. https://doi.org/10.1039/c2np20085f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohr KI, Volz C, Jansen R et al (2015) Pinensins: the first antifungal lantibiotics. Angew Chemie Int Ed 54:11254–11258. https://doi.org/10.1002/anie.201500927

    Article  CAS  Google Scholar 

  32. Repka LM, Chekan JR, Nair SK, van der Donk WA (2017) Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev 117:5457–5520. https://doi.org/10.1021/acs.chemrev.6b00591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blockus S, Sake SM, Wetzke M et al (2020) Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Res 177:104774. https://doi.org/10.1016/j.antiviral.2020.104774

    Article  CAS  PubMed  Google Scholar 

  34. Jiang Z, Lu Y, Xu J et al (2019) Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting. Bioresour Technol 292:121942. https://doi.org/10.1016/j.biortech.2019.121942

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZY, Wang RX, Zhou JS et al (2020) An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. Bioresour Technol 297:122389. https://doi.org/10.1016/j.biortech.2019.122389

    Article  CAS  PubMed  Google Scholar 

  36. Isobe K, Allison SD, Khalili B et al (2019) Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nat Commun 10:2499. https://doi.org/10.1038/s41467-019-10390-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miralles I, Lázaro R, Sánchez-Marañón M et al (2020) Biocrust cover and successional stages influence soil bacterial composition and diversity in semiarid ecosystems. Sci Total Environ 709:134654. https://doi.org/10.1016/j.scitotenv.2019.134654

    Article  CAS  PubMed  Google Scholar 

  38. Souza FFC, Rissi DV, Pedrosa FO et al (2019) Uncovering prokaryotic biodiversity within aerosols of the pristine Amazon forest. Sci Total Environ 688:83–86. https://doi.org/10.1016/j.scitotenv.2019.06.218

    Article  CAS  PubMed  Google Scholar 

  39. Martinet L, Naômé A, Deflandre B et al (2019) A single biosynthetic gene cluster is responsible for the production of bagremycin antibiotics and ferroverdin iron chelators. MBio 10:1–15. https://doi.org/10.1128/mbio.01230-19

    Article  CAS  Google Scholar 

  40. Blin K, Andreu VP, Santos E et al (2018) The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 47:625–630. https://doi.org/10.1093/nar/gky1060

    Article  CAS  Google Scholar 

  41. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW et al (2018) A computational framework for systematic exploration of biosynthetic diversity from large-scale genomic data. bioRxiv 445270. https://doi.org/10.1101/445270

  42. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW et al (2020) A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 16:60–68. https://doi.org/10.1038/s41589-019-0400-9

    Article  CAS  PubMed  Google Scholar 

  43. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape : a software environment for integrated models of biomolecular interaction networks. Genome Resarch 13:2498–2504. https://doi.org/10.1101/gr.1239303.metabolite

    Article  CAS  Google Scholar 

  44. Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945. https://doi.org/10.1093/bioinformatics/16.10.944

  45. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santos T, Cruz A, Caetano T et al (2015) Draft genome sequence of Pedobacter sp. strain NL19, a producer of potent antibacterial compounds. Genome Announc 3:e00184-e215. https://doi.org/10.1128/genomeA.00184-15

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marsh A, O’Sullivan O, Ross RP et al (2010) In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics 11:679

    Article  CAS  Google Scholar 

  48. Caetano T, van der Donk W, Mendo S (2020) Bacteroidetes can be a rich source of novel lanthipeptides: the case study of Pedobacter lusitanus. Microbiol Res 235:126441. https://doi.org/10.1016/J.MICRES.2020.126441

    Article  CAS  PubMed  Google Scholar 

  49. Walker MC, Eslami SM, Hetrick KJ et al (2020) Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 21:387. https://doi.org/10.1186/s12864-020-06785-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Connor SE (2015) Engineering of secondary metabolism. Annu Rev Genet 49:71–94. https://doi.org/10.1146/annurev-genet-120213-092053

    Article  CAS  PubMed  Google Scholar 

  51. Gomes ES, Schuch V, de Macedo Lemos EG (2013) Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol 44:1007–1034. https://doi.org/10.1590/S1517-83822013000400002

    Article  CAS  PubMed  Google Scholar 

  52. Walsh CT (2016) Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep 33:127–135. https://doi.org/10.1039/C5NP00035A

    Article  CAS  PubMed  Google Scholar 

  53. Ziemert N, Lechner A, Wietz M et al (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci 111:E1130–E1139. https://doi.org/10.1073/pnas.1324161111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Komaki H, Sakurai K, Hosoyama A et al (2018) Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci Rep 8:6888. https://doi.org/10.1038/s41598-018-24921-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Covas C, Almeida B, Esteves AC et al (2021) Peptone from casein, an antagonist of nonribosomal peptide synthesis: a case study of pedopeptins produced by Pedobacter lusitanus NL19. New Biotechnol 60:62–71. https://doi.org/10.1016/j.nbt.2020.07.006

    Article  CAS  Google Scholar 

  56. Cui CH, Liu QM, Kim JK et al (2013) Identification and characterization of a Mucilaginibacter sp. strain QM49 β-glucosidase and its use in the production of the pharmaceutically active minor ginsenosides (S)-Rh1 and (S)-Rg2. Appl Environ Microbiol 79:5788–5798. https://doi.org/10.1128/AEM.01150-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tao L, Yao H, Kasai H et al (2006) A carotenoid synthesis gene cluster from Algoriphagus sp. KK10202C with a novel fusion-type lycopene β-cyclase gene. Mol Genet Genomics 276:79–86. https://doi.org/10.1007/s00438-006-0121-0

    Article  CAS  PubMed  Google Scholar 

  58. Schöner TA, Fuchs SW, Schönau C, Bode HB (2014) Initiation of the flexirubin biosynthesis in Chitinophaga pinensis. Microb Biotechnol 7:232–241. https://doi.org/10.1111/1751-7915.12110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barona-Gómez F, Wong U, Giannakopulos AE et al (2004) Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283. https://doi.org/10.1021/ja045774k

    Article  CAS  PubMed  Google Scholar 

  60. Grobelak A, Hiller J, Grobelak A, Hiller J (2017) Bacterial siderophores promote plant growth: screening of catechol and hydroxamate siderophores. Int J Phytoremediation 19:825–833. https://doi.org/10.1080/15226514.2017.1290581

    Article  CAS  PubMed  Google Scholar 

  61. Janbandhu A, Fulekar MH (2011) Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J Hazard Mater 187:333–340. https://doi.org/10.1016/j.jhazmat.2011.01.034

    Article  CAS  PubMed  Google Scholar 

  62. Zheng G, Yin T, Lu Z et al (2020) Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. Bioresour Technol 304:123064. https://doi.org/10.1016/j.biortech.2020.123064

    Article  CAS  PubMed  Google Scholar 

  63. Jiménez DJ, Dini-Andreote F, Van Elsas JD (2014) Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels 7:92. https://doi.org/10.1186/1754-6834-7-92

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tian F, Ding Y, Zhu H et al (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40:276. https://doi.org/10.1590/S1517-838220090002000013

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xu L, Zhang H, Xing YT et al (2020) Complete genome sequence of Sphingobacterium psychroaquaticum strain SJ-25, an aerobic bacterium capable of suppressing fungal pathogens. Curr Microbiol 77:115–122. https://doi.org/10.1007/s00284-019-01789-3

    Article  CAS  PubMed  Google Scholar 

  66. Feng F, Ge J, Li Y et al (2017) Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability. Chemosphere 184:505–513. https://doi.org/10.1016/j.chemosphere.2017.05.178

    Article  CAS  PubMed  Google Scholar 

  67. Barbosa J, Caetano T, Mendo S (2015) Class I and Class II lanthipeptides produced by Bacillus spp. J Nat Prod 78:2850–2866. https://doi.org/10.1021/np500424y

    Article  CAS  PubMed  Google Scholar 

  68. Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81:479–505. https://doi.org/10.1146/annurev-biochem-060110-113521

    Article  CAS  PubMed  Google Scholar 

  69. Hegemann JD, Süssmuth RD (2020) Matters of class: coming of age of class III and IV lanthipeptides. RSC Chem Biol 1:110–127. https://doi.org/10.1039/d0cb00073f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Müller WM, Ensle P, Krawczyk B, Süssmuth RD (2011) Leader peptide-directed processing of labyrinthopeptin A2 precursor peptide by the modifying enzyme LabKC. Biochemistry 50:8362–8373. https://doi.org/10.1021/bi200526q

    Article  CAS  PubMed  Google Scholar 

  71. Wang J, Ma H, Ge X et al (2014) Bovicin HJ50-like lantibiotics, a novel subgroup of lantibiotics featured by an indispensable disulfide bridge. PLoS ONE 9:e97121. https://doi.org/10.1371/journal.pone.0097121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Madej M, White JBR, Nowakowska Z et al (2020) Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat Microbiol 5:1016–1025. https://doi.org/10.1038/s41564-020-0716-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim J-S, Song S, Lee M et al (2016) Crystal structure of a soluble fragment of the membrane fusion protein HlyD in a type I secretion system of gram-negative bacteria. Structure 24:477–485. https://doi.org/10.1016/j.str.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  74. Breton C, Šnajdrová L, Jeanneau C et al (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29–37. https://doi.org/10.1093/glycob/cwj016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Jorge Navarro-Muñoz for his help, which allowed us to run BiG-SCAPE software package properly.

Funding

Cláudia Covas was supported by Fundação para a Ciência e Tecnologia (FCT), POPH and European Union grant SFRH/BD/98446/2013. Tânia Caetano was funded by national funds (OE), through FCT in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July (CEECIND/01463/2017).

The CESAM research unit is supported by FCT/MCTES through national funds (UIDP/50,017/2020 + UIDB/50,017/2020).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tania Caetano, Claúdia Covas. Data curation: Gonçalo Figueiredo, Margarida Gomes. Formal Analysis: Gonçalo Figueiredo, Margarida Gomes, Claúdia Covas. Investigation: Gonçalo Figueiredo, Margarida Gomes, Claúdia Covas. Supervision: Tania Caetano, Sónia Mendo. Writing — original draft: Gonçalo Figueiredo, Margarida Gomes, Claúdia Covas, Sónia Mendo, Tânia Caetano. Writing — review & editing: Gonçalo Figueiredo, Margarida Gomes, Claúdia Covas, Sónia Mendo, Tânia Caetano.

Corresponding author

Correspondence to Tânia Caetano.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors agreed with the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictionalclaims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 88 KB)

Supplementary file2 (DOCX 7964 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, G., Gomes, M., Covas, C. et al. The Unexplored Wealth of Microbial Secondary Metabolites: the Sphingobacteriaceae Case Study. Microb Ecol 83, 470–481 (2022). https://doi.org/10.1007/s00248-021-01762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01762-3

Keywords

Navigation