Skip to main content
Log in

A Slimy Business: the Future of Fish Skin Microbiome Studies

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fish skin contains a mucosal microbiome for the largest and oldest group of vertebrates, a location ideal for microbial community ecology and practical applications in agriculture and veterinary medicine. These selective microbiomes are dominated by Proteobacteria, with compositions different from the surrounding water. Core taxa are a small percentage of those present and are currently functionally uncharacterized. Methods for skin sampling, DNA extraction and amplification, and sequence data processing are highly varied across the field, and reanalysis of recent studies using a consistent pipeline revealed that some conclusions did change in statistical significance. Further, the 16S gene sequencing approaches lack quantitation of microbes and copy number adjustment. Thus, consistency in the field is a serious limitation in comparing across studies. The most significant area for future study, requiring metagenomic and metabolomics data, is the biochemical pathways and functions within the microbiome community, the interactions between members, and the resulting effects on fish host health being linked to specific nutrients and microbial species. Genes linked to skin colonization, such as those for attachment or mucin degradation, need to be uncovered and explored. Skin immunity factors need to be directly linked to microbiome composition and individual taxa. The basic foundation has been laid, and many exciting future discoveries remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Colwell RR (1962) The bacterial flora of Puget Sound fish. J Appl Bacteriol 25(2):147–158

    Article  Google Scholar 

  2. Leonard AB, Carlson JM, Bishoff DE, Sendelbach SI, Yung SB, Ramzanali S, Manage ABW, Hyde ER, Petrosino JF, Primm TP (2014) The skin microbiome of Gambusia affinis is defined and selective. Ad Microbiol 4:335–343

    Article  Google Scholar 

  3. Brumlow CE, Luna RA, Hollister EB, Gomez JA, Burcham LA, Cowdrey MB, Primm TP (2019) Biochemical but not compositional recovery of skin mucosal microbiome communities after disruption. Infect Drug Resist 12:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiarello M, Paz-Vinas I, Veyssière C, Santoul F, Loot G, Ferriol J, Boulêtreau S (2019) Environmental conditions and neutral processes shape the skin microbiome of European catfish (Silurus glanis) populations of Southwestern France. Environ Microbiol Rep. 11:605–614. https://doi.org/10.1111/1758-2229.12774

    Article  PubMed  Google Scholar 

  5. Hamilton EF, Element G, van Coeverden de Groot P, Engel K, Neufeld JD, Shah V, Walker VK (2019) Anadromous Arctic char microbiomes: bioprospecting in the high Arctic. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00032

  6. Nurul ANA, Muhammad DD, Okomoda VT, Nur AAB (2019) 16S rRNA-based metagenomic analysis of microbial communities associated with wild Labroides dimidiatus from Karah Island, Terengganu, Malaysia. Biotechnol Rep (Amst) 21:e00303. https://doi.org/10.1016/j.btre.2019.e00303

    Article  Google Scholar 

  7. Tarnecki AM, Brennan NP, Schloesser RW, Rhody NR (2019) Shifts in the skin-associated microbiota of hatchery-reared common snook Centropomus undecimalis during acclimation to the wild. Microb Ecol 77(3):770–781

    Article  PubMed  Google Scholar 

  8. Xavier R, Mazzei R, Pérez-Losada M, Rosado D, Santos JL, Veríssimo A, Soares MC (2019) A risky business? Habitat and social behavior impact skin and gut microbiomes in Caribbean cleaning gobies. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00716

  9. Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19(1):21–41

    Article  CAS  PubMed  Google Scholar 

  10. Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 5. https://doi.org/10.3389/fmicb.2014.00207

  11. Ross AA, Rodrigues Hoffmann A, Neufeld JD (2019) The skin microbiome of vertebrates. Microbiome. 7:79. https://doi.org/10.1186/s40168-019-0694-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boutin S, Sauvage C, Bernatchez L, Audet C, Derome N (2014) Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? PLoS One 9(7):e102649

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carlson JM, Hyde ER, Petrosino JF, Manage ABW, Primm TP (2015) The host effects of Gambusia affinis with an antibiotic-disrupted microbiome. Comp Biochem Physiol C Toxicol Pharmacol 178:163–168

    Article  CAS  PubMed  Google Scholar 

  14. Chiarello M, Villéger S, Bouvier C, Bettarel Y, Bouvier T (2015) High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiv061

  15. Larsen AM, Bullard SA, Womble M, Arias CR (2015) Community structure of skin microbiome of gulf killifish, Fundulus grandis, is driven by seasonality and not exposure to oiled sediments in a Louisiana salt marsh. Microb Ecol 70(2):534–544

    Article  CAS  PubMed  Google Scholar 

  16. Lowrey L, Woodhams DC, Tacchi L, Salinas I (2015) Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol 81(19):6915–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohammed HH, Arias CR (2015) Potassium permanganate elicits a shift of the external fish microbiome and increases host susceptibility to columnaris disease. Vet Res 46:82

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmidt VT, Smith KF, Melvin DW, Amaral-Zettler LA (2015) Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol 24(10):2537–2550

    Article  PubMed  Google Scholar 

  19. Lokesh J, Kiron V (2016) Transition from freshwater to seawater reshapes the skin-associated microbiota of Atlantic salmon. Sci Rep. https://doi.org/10.1038/srep19707

  20. Sylvain FE, Cheaib B, Llewellyn M, Gabriel Correia T, Barros Fagundes D, Luis Val A, Derome N (2016) pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum). Sci Rep. https://doi.org/10.1038/srep32032

  21. Carlson JM, Leonard AB, Hyde ER, Petrosino JF, Primm TP (2017) Microbiome disruption and recovery in the fish Gambusia affinis following exposure to broad-spectrum antibiotic. Infect Drug Resist 10:143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Minniti G, Hagen LH, Porcellato D, Jørgensen SM, Pope PB, Vaaje-Kolstad G (2017) The skin-mucus microbial community of farmed Atlantic salmon (Salmo salar). Front Microbiol. https://doi.org/10.3389/fmicb.2017.02043

  23. Chiarello M, Auguet JC, Bettarel Y, Bouvier C, Claverie T, Graham NAJ, Rieuvilleneuve F, Sucré E, Bouvier T, Villéger S (2018) Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6(1):147

    Article  PubMed  PubMed Central  Google Scholar 

  24. Legrand TPRA, Catalano SR, Wos-Oxley ML, Stephens F, Landos M, Bansemer MS, Stone DAJ, Qin JG, Oxley APA (2018) The inner workings of the outer surface: skin and gill microbiota as indicators of changing gut health in yellowtail kingfish. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02664

  25. Uren Webster TM, Consuegra S, Hitchings M, Garcia de Leaniz C (2018) Interpopulation variation in the Atlantic salmon microbiome reflects environmental and genetic diversity. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00691-18

  26. Pratte ZA, Patin NV, McWhirt ME, Caughman AM, Parris DJ, Stewart FJ (2018) Association with a sea anemone alters the skin microbiome of clownfish. Coral Reefs. 37:1119–1125. https://doi.org/10.1007/s00338-018-01750-z

    Article  Google Scholar 

  27. Schloss PD (2019) Univ of Michigan. http://www.riffomonas.org/reproducible_research/ Accessed 4 June 2020

  28. Ruzicka L, Howe DG, Ramachandran S, Toro S, Van Slyke CE, Bradford YM, Eagle A, Fashena D, Frazer K, Kalita P, Mani P, Martin R, Moxon ST, Paddock H, Pich C, Schaper K, Shao X, Singer A, Westerfield M (2019) The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic Acids Res. 47:D867–D873. https://doi.org/10.1093/nar/gky1090

    Article  CAS  PubMed  Google Scholar 

  29. Tapia-Paniagua ST, Ceballos-Francisco D, Balebona MC, Esteban MA, Morinigo MA (2018) Mucus glycosylation, immunity and bacterial microbiota associated to the skin of experimentally ulcered gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 75:381–390. https://doi.org/10.1016/j.fsi.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  30. Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM (2014) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43:D593–D598. https://doi.org/10.1093/nar/gku1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Louca S, Doebeli M, Parfrey LW (2018) Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome. 6:41. https://doi.org/10.1186/s40168-018-0420-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee CK, Herbold CW, Polson SW, Wommack KE, Williamson SJ, McDonald IR, Cary SC (2012) Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing. https://doi.org/10.1371/journal.pone.0044224

  33. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schloss PD (2019) Univ of Michigan. https://www.mothur.org/. Accessed 14 June 2020

  35. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. QIIME development team (2019) https://qiime2.org/. Accessed 4 June 2020

  37. Lahti L, Shetty S, et al (2017) Tools for microbiome analysis in R. Version 2.1.24. 2017. http://github.com/microbiome/microbiome. Accessed 06/12/2020

  38. Ssekagiri A, Sloan WT, Ijaz UZ (2018) An R package for microbial community analysis in an environmental context. http://userweb.eng.gla.ac.uk/umer.ijaz/projects/microbiomeSeq_Tutorial.html. Accessed 4 June 2020

  39. Fernandez SL, Vetrovsky T, Baldrian P (2019) The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiol (Praha). 64:19–23. https://doi.org/10.1007/s12223-018-0627-y

    Article  CAS  Google Scholar 

  40. Sevigny JL, Rothenheber D, Diaz KS, Zhang Y, Agustsson K, Bergeron RD, Thomas WK (2019) Marker genes as predictors of shared genomic function. BMC Genomics. 20:268. https://doi.org/10.1186/s12864-019-5641-1

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schloss PD (2018) The Riffomonas reproducible research tutorial series. J Open Source Ed. https://doi.org/10.21105/jose.00013

  42. Fujimoto M, Lovett B, Angoshtari R, Nirenberg P, Loch TP, Scribner KT, March TL (2018) Antagonistic interactions and biofilm forming capabilities among bacterial strains isolated from the egg surfaces of lake sturgeon (Acipenser fulvescens). Microb Ecol 75:22–37. https://doi.org/10.1007/s00248-017-1013-z

    Article  CAS  PubMed  Google Scholar 

  43. Carda-Dieguez M, Ghai R, Rodriguez-Valera F, Amaro C (2017) Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. Microbiome. 5:162. https://doi.org/10.1186/s40168-017-0376-1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Soares MC, Cable J, Lima-Maximino MG, Maximino C, Xavier R (2019) Using fish models to investigate the links between microbiome and social behavior: the next step for translational microbiome research? Fish Fish. https://doi.org/10.1111/faf.12366

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd P. Primm.

Ethics declarations

Conflict of Interest

The authors declare there are no conflicts of interest with this work.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Code Availability

Not applicable

Supplementary Information

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, J.A., Primm, T.P. A Slimy Business: the Future of Fish Skin Microbiome Studies. Microb Ecol 82, 275–287 (2021). https://doi.org/10.1007/s00248-020-01648-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01648-w

Keywords

Navigation