Skip to main content
Log in

Insights into the Gut and Skin Microbiome of Freshwater Fish, Smelt (Hypomesus nipponensis)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Freshwater smelt (Hypomesus nipponensis) is a planktivorous fish found in the river of South Korea, Japan, China, and Russia. Because of its specific characteristics living in the cold temperature, this species is economically valuable in the various countries that held winter festival. The body size of the smelt is too small, so people consumed raw smelt during the winter festival sometimes. However, the microbial studies of smelt are nonexistent. Here, we characterized and compared the bacterial communities in the gut and skin of freshwater smelts. We amplified, sequenced, and analyzed the V4 regions of bacterial 16S rRNA genes from freshwater smelts. The microbial diversity in the skin (375 OTUs) was much greater than that in the gut (250 OTUs). At the phylum level, Proteobacteria (gut: 51.5%; skin: 52.9%), Firmicutes (gut: 30.6%; skin: 25.4%), Bacteroidetes (gut: 7.7%; skin: 14.7%), and Actinobacteria (gut: 5.2%; skin: 3.8%) were predominant in both organs. At the genus level, Sphingomonas (gut: 24.9%; skin: 4.4%, P < 0.01) was more abundant in the gut, whereas Acinetobacter (gut: 0.8%; skin: 11.8%, P = 0.02) and Pseudomonas (gut: 0.3%; skin: 2.1%, P = 0.01) were more abundant in the skin. Both beneficial (Lactobacillus) and harmful (Staphylococcus and Streptococcus) bacteria were detected in both organs, even under freshwater conditions. These results revealed that smelts have their own unique microbial communities in the gut and skin. Our findings broaden the understanding of planktivorous freshwater fish microbiomes and provide new insights into fish microbiomes for ensuring food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated and analyzed in this study are included in this published article. Obtained sequences were deposited in GenBank with the Accession Number PRJNA636637.

References

  1. de Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM (2018) Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol 94(1):fix161

    Article  Google Scholar 

  2. Hellberg RS, DeWitt CAM, Morrissey MT (2012) Risk-benefit analysis of seafood consumption: a review. Compr Rev Food Sci Food Saf 11(5):490–517

    Article  CAS  Google Scholar 

  3. Domingo JL, Bocio A, Falcó G, Llobet JM (2007) Benefits and risks of fish consumption: Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology 230(2–3):219–226

    Article  CAS  PubMed  Google Scholar 

  4. Papadopoulou C, Economou E, Zakas G, Salamoura C, Dontorou C, Apostolou J (2007) Microbiological and pathogenic contaminants of seafood in Greece. J Food Qual 30(1):28–42

    Article  Google Scholar 

  5. Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric 96(1):32–48

    Article  CAS  PubMed  Google Scholar 

  6. Green AJ, Planchart A (2018) The neurological toxicity of heavy metals: a fish perspective. Comp Biochem Physiol C 208:12–19

    CAS  Google Scholar 

  7. Iwamoto M, Ayers T, Mahon BE, Swerdlow DL (2010) Epidemiology of seafood-associated infections in the United States. Clin Microbiol Rev 23(2):399–411

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oliver JJE (2005) Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiol Infect 133 (3):383–391

  9. Hoseinifar SH, Sun Y-Z, Wang A, Zhou Z (2018) Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9:2429

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou Z, He S, Liu Y, Cao Y, Meng K, Yao B, Ringø E, Yoon I (2011) Gut microbial status induced by antibiotic growth promoter alters the prebiotic effects of dietary DVAQUA® on Aeromonas hydrophila-infected tilapia: production, intestinal bacterial community and non-specific immunity. Vet Microbiol 149(3–4):399–405

    Article  CAS  PubMed  Google Scholar 

  11. Butt RL, Volkoff H (2019) Gut microbiota and energy homeostasis in fish. Front Endocrinol 10:9

    Article  Google Scholar 

  12. Larsen A, Mohammed H, Arias C (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116(6):1396–1404

    Article  CAS  PubMed  Google Scholar 

  13. Xia Y, Wang M, Gao F, Lu M, Chen G (2019) Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Animal Nutrition 6:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reinhart EM, Korry BJ, Rowan AD, Belenky P (2019) Defining the distinct skin and gut microbiomes of the northern pike (Esox lucius). Front Microbiol 10:2118

    Article  PubMed  PubMed Central  Google Scholar 

  15. Givens CE, Ransom B, Bano N, Hollibaugh JT (2015) Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Prog Ser 518:209–223

    Article  Google Scholar 

  16. Wang AR, Ran C, Ringø E, Zhou ZG (2018) Progress in fish gastrointestinal microbiota research. Rev Aquac 10(3):626–640

    Article  Google Scholar 

  17. Choi S, Kim EB (2019) Complete mitochondrial genome sequence and SNPs of the Korean smelt Hypomesus nipponensis (Osmeriformes, Osmeridae). Mitochondrial DNA Part B 4(1):1844–1845

    Article  Google Scholar 

  18. Kim H, Hong Y, Jo J, Ha S, Kim S, Lee H, Rhee M-S (2017) Raw ready-to-eat seafood safety: microbiological quality of the various seafood species available in fishery, hyper and online markets. Lett Appl Microbiol 64(1):27–34

    Article  CAS  PubMed  Google Scholar 

  19. Bukin YS, Galachyants YP, Morozov I, Bukin S, Zakharenko A, Zemskaya T (2019) The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 6:190007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xavier R, Mazzei R, Losada M, Rosado D, Santos J, Veríssimo A, Soares MC (2019) A risky business? Habitat and social behaviour impact skin and gut microbiomes in Caribbean cleaning gobies. Front Microbiol 10:716

    Article  PubMed  PubMed Central  Google Scholar 

  21. Etyemez M, Balcázar JL (2015) Bacterial community structure in the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss) as revealed by pyrosequencing-based analysis of 16S rRNA genes. Res Vet Sci 100:8–11

    Article  CAS  PubMed  Google Scholar 

  22. Sylvain F-É, Cheaib B, Llewellyn M, Correia TG, Fagundes DB, Val AL, Derome N (2016) pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum). Sci Rep 6(1):1–10

    Article  Google Scholar 

  23. Salinas I (2015) The mucosal immune system of teleost fish. Biology 4(3):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reverter M, Tapissier-Bontemps N, Lecchini D, Banaigs B, Sasal P (2018) Biological and ecological roles of external fish mucus: a review. Fishes 3(4):41

    Article  Google Scholar 

  25. Brinchmann MF (2016) Immune relevant molecules identified in the skin mucus of fish using-omics technologies. Mol BioSyst 12(7):2056–2063

    Article  CAS  PubMed  Google Scholar 

  26. Wei OY, Xavier R, Marimuthu K (2010) Screening of antibacterial activity of mucus extract of snakehead fish, Channa striatus (Bloch). Eur Rev Med Pharmacol Sci 14(8):675–681

    PubMed  Google Scholar 

  27. Minniti G, Hagen LH, Porcellato D, Jørgensen SM, Pope PB, Vaaje-Kolstad G (2017) The skin-mucus microbial community of farmed Atlantic salmon (Salmo salar). Front Microbiol 8:2043

    Article  PubMed  PubMed Central  Google Scholar 

  28. Merrifield DL, Rodiles A (2015) The fish microbiome and its interactions with mucosal tissues. In: Beck BH, Peatman E (eds) Mucosal health in aquaculture. Elsevier, Amsterdam, pp 273–295

    Chapter  Google Scholar 

  29. Reid G, Liutkus M, Robinson S, Chopin T, Blair T, Lander T, Mullen J, Page F, Moccia R (2009) A review of the biophysical properties of salmonid faeces: implications for aquaculture waste dispersal models and integrated multi-trophic aquaculture. Aquac Res 40(3):257–273

    Article  Google Scholar 

  30. Tarnecki AM, Brennan NP, Schloesser RW, Rhody NR (2019) Shifts in the skin-associated microbiota of hatchery-reared common snook Centropomus undecimalis during acclimation to the wild. Microb Ecol 77(3):770–781

    Article  PubMed  Google Scholar 

  31. Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, Wang W (2016) The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep 6:24340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leys NM, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70(4):1944–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen W-M, Li Y-S, Sheu S-Y (2016) Sphingomonas piscinae sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 66(12):5301–5308

    Article  CAS  PubMed  Google Scholar 

  34. Ricaud K, Rey M, Plagnes-Juan E, Larroquet L, Even M, Quillet E, Skiba-Cassy S, Panserat S (2018) Composition of intestinal microbiota in two lines of rainbow trout (Oncorhynchus mykiss) divergently selected for muscle fat content. Open Microbiol J 12:308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gajardo K, Rodiles A, Kortner TM, Krogdahl Å, Bakke AM, Merrifield DL, Sørum H (2016) A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Sci Rep 6:30893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saitou T, Sugiura N, Itayama T, Inamori Y, Matsumura M (2003) Degradation characteristics of microcystins by isolated bacteria from Lake Kasumigaura. J Water Supply 52(1):13–18

    Article  CAS  Google Scholar 

  37. Ringø E, Zhou Z, Vecino JG, Wadsworth S, Romero J, Krogdahl Å, Olsen R, Dimitroglou A, Foey A, Davies S (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr 22(2):219–282

    Article  Google Scholar 

  38. Zhou X, Hu Z, Liu Q, Yang L, Wang Y (2013) Feeding ecology of the non-indigenous fish Hypomesus nipponensis in Lake Ulungur, China: insight into the relationship between its introduction and the collapse of the native Eurasian perch population. Mar Freshw Res 64(6):549–557

    Article  Google Scholar 

  39. Okano K, Shimizu K, Kawauchi Y, Maseda H, Utsumi M, Zhang Z, Neilan BA, Sugiura N (2009) Characteristics of a microcystin-degrading bacterium under alkaline environmental conditions. J Toxicol 2009:954291

    Article  PubMed  Google Scholar 

  40. Pham T-L, Utsumi M (2018) An overview of the accumulation of microcystins in aquatic ecosystems. J Environ Manag 213:520–529

    Article  CAS  Google Scholar 

  41. Somdee T, Thunders M, Ruck J, Lys I, Allison M (2013) Page R (2013) Degradation of [] MC-LR by a Microcystin degrading bacterium isolated from Lake Rotoiti, New Zealand. ISRN Microbiol 2013:596429

    Article  PubMed  PubMed Central  Google Scholar 

  42. Larson D, Ahlgren G, Willén E (2014) Bioaccumulation of microcystins in the food web: a field study of four Swedish lakes. Inland Waters 4(1):91–104

    Article  CAS  Google Scholar 

  43. Lampert W (1987) Laboratory studies on zooplankton-cyanobacteria interactions. NZ J Mar Freshw Res 21(3):483–490

    Article  Google Scholar 

  44. Bukaveckas PA, Lesutienė J, Gasiūnaitė ZR, Ložys L, Olenina I, Pilkaitytė R, Pūtys Ž, Tassone S, Wood J (2017) Microcystin in aquatic food webs of the Baltic and Chesapeake Bay regions. Estuar Coast Shelf Sci 191:50–59

    Article  Google Scholar 

  45. Percival S, Williams D (2014) Chapter Two-Acinetobacter. In: Percival S, Yates MV, Williams D, Chalmers R, Gray N (eds) Microbiology of waterborne diseases. Academic Press, London

    Google Scholar 

  46. Cosseau C, Romano-Bertrand S, Duplan H, Lucas O, Ingrassia I, Pigasse C, Roques C, Jumas-Bilak E (2016) Proteobacteria from the human skin microbiota: species-level diversity and hypotheses. One Health 2:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kluga A, Kacaniová M, Kantor A, Kovalenko K, Terentjeva M (2017) Identification of microflora of freshwater fish caught in the Driksna river and pond in Latvia. In: 11th Baltic conference on food science and technology “Food science and technology in a changing world” FOODBALT 2017, Jelgava, Latvia, 27–28 April 2017, pp 164–168

  48. Kozińska A, Paździor E, Pękala A, Niemczuk W (2014) Acinetobacter johnsonii and Acinetobacter lwoffii-the emerging fish pathogens. Bull Vet Inst Pulawy 58(2):193–199

    Article  Google Scholar 

  49. Guardabassi L, Dalsgaard A, Olsen J (1999) Phenotypic characterization and antibiotic resistance of Acinetobacter spp. isolated from aquatic sources. J Appl Microbiol 87(5):659–667

    Article  CAS  PubMed  Google Scholar 

  50. Almasaudi SB (2018) Acinetobacter spp. as nosocomial pathogens: epidemiology and resistance features. Saudi J Biol Sci 25(3):586–596

    Article  PubMed  Google Scholar 

  51. Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell infect Microbiol 7:39

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang W, Zheng S, Sharshov K, Sun H, Yang F, Wang X, Li L, Xiao Z (2017) Metagenomic profiling of gut microbial communities in both wild and artificially reared Bar-headed goose (Anser indicus). MicrobiologyOpen 6(2):e00429

    Article  Google Scholar 

  53. Jiang M, Xu M, Ying C, Yin D, Dai P, Yang Y, Ye K, Liu K (2020) The intestinal microbiota of lake anchovy varies according to sex, body size, and local habitat in Taihu Lake, China. MicrobiologyOpen 9(1):e00955

    Article  PubMed  Google Scholar 

  54. Wang X, Quinn PJ (2010) Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res 49(2):97–107

    Article  CAS  PubMed  Google Scholar 

  55. Maldonado RF, Sá-Correia I, Valvano MA (2016) Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 40(4):480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koo OK, Lee SJ, Chung KR, Jang DJ, Yang HJ, Kwon DY (2016) Korean traditional fermented fish products: jeotgal. J Ethn Foods 3(2):107–116

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (No. 20180430) and supported by the BK21 Plus Program from Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

EBK contributed to conceptualization, funding acquisition, project administration, resources, and supervision. JP was involved in data curation, investigation, and visualization. JP and EBK contributed to formal analysis, methodology, software, validation, writing––original draft, and writing––review and editing.

Corresponding author

Correspondence to Eun Bae Kim.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest to declare.

Informed Consent (Animal ethical approval)

All experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Kangwon National University (Approval No. KW-181022–1).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 171 kb)

Supplementary file 2 (PPTX 436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, E.B. Insights into the Gut and Skin Microbiome of Freshwater Fish, Smelt (Hypomesus nipponensis). Curr Microbiol 78, 1798–1806 (2021). https://doi.org/10.1007/s00284-021-02440-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02440-w

Navigation