Skip to main content
Log in

Ciliate Diversity From Aquatic Environments in the Brazilian Atlantic Forest as Revealed by High-Throughput DNA Sequencing

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

A Correction to this article was published on 20 January 2021

This article has been updated

Abstract

Rainforest aquatic ecosystems include complex habitats with scarce information on their unicellular eukaryote diversity and community structure. We have investigated the diversity of ciliates in freshwater and brackish environments along the Brazilian Atlantic Forest, based on the hypervariable V4 region of the 18S-rDNA obtained by high-throughput DNA sequencing. Our analyses detected 409 ciliate taxonomic units (OTUs), mostly attributed to the classes Oligohymenophorea and Spirotrichea. A total of 11 classes, 12 subclasses, 112 genera, and 144 species were reported. We found the following: (a) the ciliate communities are more diverse in freshwater- than in Atlantic Forest-associated brackish environments; (b) the ciliate communities are composed by a small amount of highly abundant OTUs, but a high number of low-abundant or rare OTUs; (c) nearly one-third of the ciliate OTUs share less than 97% sequence identity to reference sequences and (d) phylogenetic inference supports the hypothesis that the V4 region of the Ciliophora 18S-rDNA is a suitable marker for accurate evolutionary inferences at class level. Our results showed that a considerable fraction of the HTS-detected diversity of ciliates from Brazilian Atlantic Forest is not represented in the currently available molecular databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Weisse T, Sonntag B (2016) Ciliates in planktonic food webs: communication and adaptive response. In: Witzany G, Nowacki M (eds) Biocommunication of ciliates. Springer International Publishing, pp 351–372. https://doi.org/10.1007/978-3-319-32211-7_19

  2. Fenchel T (1987) Ecological physiology: bioenergetics. Ecology of protozoa. Springer, Berlin, pp 53–62. https://doi.org/10.1007/978-3-662-25981-8_4

    Chapter  Google Scholar 

  3. Foissner W (1998) An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur. J. Protistol. 34:195–235. https://doi.org/10.1016/S0932-4739(98)80028-X

    Article  Google Scholar 

  4. Foissner W (2016) Terrestrial and semiterrestrial ciliates (Protozoa, Ciliophora) from Venezuela and Galápagos. Denisia 35:1–912

    Google Scholar 

  5. Foissner W (1996) Faunistics, taxonomy and ecology of moss and soil ciliates (Protozoa, Ciliophora) from Antarctica, with description of new species, including Pleuroplitoides smithi gen. n., sp. n. Acta Protozool. 35:95–123

    Google Scholar 

  6. Simão TL, Borges AG, Gano KA, Davis-Richardson AG, Brown CT, Fagen JR et al (2017) Characterization of ciliate diversity in bromeliad tank waters from the Brazilian Atlantic Forest. Eur. J. Protistol. 61:359–365. https://doi.org/10.1016/j.ejop.2017.05.005

    Article  PubMed  Google Scholar 

  7. Gentekaki E, Kolisko M, Gong Y, Lynn D (2017) Phylogenomics solves a long-standing evolutionary puzzle in the ciliate world: the subclass Peritrichia is monophyletic. Mol. Phylogenet. Evol. 106:1–5. https://doi.org/10.1016/j.ympev.2016.09.016

    Article  PubMed  Google Scholar 

  8. Lynn DH, Kolisko M (2017) Molecules illuminate morphology: phylogenomics confirms convergent evolution among ‘oligotrichous’ ciliates. Int. J. Syst. Evol. Microbiol. 67:3676–3682. https://doi.org/10.1099/ijsem.0.002060

    Article  CAS  PubMed  Google Scholar 

  9. Lynn DH, Kolisko M, Bourland W (2018) Phylogenomic analysis of Nassula variabilis n. sp., Furgasonia blochmanni, and Pseudomicrothorax dubius confirms a nassophorean clade. Protist 169:180–189. https://doi.org/10.1016/j.protis.2018.02.002

    Article  PubMed  Google Scholar 

  10. Lasek-Nesselquist E, Johnson MD (2019) A phylogenomic approach to clarifying the relationship of Mesodinium within the Ciliophora: a case study in the complexity of mixed-species transcriptome analyses. Gen Biol Evol 11:3218–3232. https://doi.org/10.1093/gbe/evz233

    Article  CAS  Google Scholar 

  11. Pan B, Chen X, Hou L, Zhang Q, Qu Z, Warren A, Miao M (2019) Comparative genomics analysis of ciliates provides insights on the evolutionary history within “Nassophorea–Synhymenia–Phyllopharyngea” assemblage. Front. Microbiol. 10:2819. https://doi.org/10.3389/fmicb.2019.02819

    Article  PubMed  PubMed Central  Google Scholar 

  12. Almeida DS (2016) Floresta Atlântica. Recuperação ambiental da Mata Atlântica3rd edn. Editus, Ilhéus, pp 42–46. https://doi.org/10.7476/9788574554402

    Chapter  Google Scholar 

  13. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  14. Pontes JAL (2015) Biodiversidade Carioca—Segredos Revelados. Technical Books Editora, Rio de Janeiro

    Google Scholar 

  15. Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D, Mayor J, Bunge J, Sernaker S, Siemensmeyer T, Trautmann I, Romac S, Berney C, Kozlov A, Mitchell EAD, Seppey CVW, Egge E, Lentendu G, Wirth R, Trueba G, Dunthorn M (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 1:0091. https://doi.org/10.1038/s41559-017-0091

    Article  Google Scholar 

  16. Cavaleiro J, Oliveira NB, Ribeiro TA, Guimarães LF, Fernandes NM, da Silva-Neto ID et al (2020) Distinguishing activities in the photodynamic arsenals of the pigmented ciliates Blepharisma sinuosum Sawaya, 1940 and Blepharisma japonicum Suzuki, 1954 (Ciliophora: Heterotrichea). Photochem. Photobiol. https://doi.org/10.1111/php.13288

  17. Stoeck T, Breiner H, Filker S, Ostermaier V, Kammerlander B, Sonntag B (2014) A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 16:430–444. https://doi.org/10.1111/1462-2920.12194

    Article  CAS  PubMed  Google Scholar 

  18. Gimmler A, Korn R, de Vargas C, Audic S, Stoeck T (2016) The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6:33555. https://doi.org/10.1038/srep33555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santoferrara LF, Grattepanche J, Katz LA, McManus GB (2016) Patterns and processes in microbial biogeography: do molecules and morphologies give the same answers? ISME J. 10:1779–1790. https://doi.org/10.1038/ismej.2015.224

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boscaro V, Rossi A, Vannini C, Verni F, Fokin SI, Petroni G (2017) Strengths and biases of high-throughput sequencing data in the characterization of freshwater ciliate microbiomes. Microb. Ecol. 73:865–875. https://doi.org/10.1007/s00248-016-0912-8

    Article  CAS  PubMed  Google Scholar 

  21. Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372. https://doi.org/10.1371/journal.pone.0006372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora MJ, Chistoserdov A, Orsi W, Edgcomb VP (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol. 7:72. https://doi.org/10.1186/1741-7007-7-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orsi W, Edgcomb V, Faria J, Foissner W, Fowle WH, Hohmann T, Suarez P, Taylor C, Taylor GT, Vd'ačný P, Epstein SS (2012) Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin, Venezuela. Int. J. Syst. Evol. Microbiol. 62:1425–1433. https://doi.org/10.1099/ijs.0.034710-0

    Article  CAS  PubMed  Google Scholar 

  24. Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D (2013) Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 7:2387–2399. https://doi.org/10.1038/ismej.2013.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sogin ML, Morrison HG, Huber JA, Mark WD, Huse SM, Neal PR et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U. S. A. 103:12115–12120. https://doi.org/10.1073/pnas.0605127103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69:5656–5663. https://doi.org/10.1128/AEM.69.9.5656-5663.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dunthorn M, Otto J, Berger SA, Stamatakis A, Mahé F, Romac S, de Vargas C, Audic S, Consortium BMK, Stock A, Kauff F, Stoeck T (2014) Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol. Biol. Evol. 31:993–1009. https://doi.org/10.1093/molbev/msu055

    Article  CAS  PubMed  Google Scholar 

  28. Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol. Biol. Evol. 2:399–410. https://doi.org/10.1093/oxfordjournals.molbev.a040362

    Article  CAS  PubMed  Google Scholar 

  29. Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK (2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J. 4:1053–1059. https://doi.org/10.1038/ismej.2010.26

    Article  PubMed  Google Scholar 

  30. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed

    Google Scholar 

  32. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  34. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10:57–59. https://doi.org/10.1038/nmeth.2276

    Article  CAS  PubMed  Google Scholar 

  35. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, Chase J, McDonald D, Gonzalez A, Robbins-Pianka A, Clemente JC, Gilbert JA, Huse SM, Zhou HW, Knight R, Caporaso JG (2014) Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2:e545. https://doi.org/10.7717/peerj.545

    Article  PubMed  PubMed Central  Google Scholar 

  38. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:590–596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  39. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ. Microbiol. 13:340–349. https://doi.org/10.1111/j.1462-2920.2010.02332.x

    Article  CAS  PubMed  Google Scholar 

  40. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8(4) e61217. https://doi.org/10.1371/journal.pone.0061217

  41. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251. https://doi.org/10.2307/1218190

    Article  Google Scholar 

  43. Simpson EH (1949) Measurement of diversity. Nature 163:688–688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  44. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sorenson T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K. Dan. Vidensk. Selsk. Biol. Skr. 5:1–34

    Google Scholar 

  46. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73:1576–1585. https://doi.org/10.1128/AEM.01996-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wickham H (2016) ggplot2: elegant graphics for data analysis1st edn. Springer. https://doi.org/10.1007/978-0-387-98141-3

  48. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R et al (2019) Welcome to the tidyverse. J Open Source Softw 4:1686. https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  49. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trifinopoulos J, Nguyen L, Von Haeseler A, Minh B (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44:W232–W235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lynn D (2008) The ciliated protozoa: characterization, classification, and guide to the literature3rd edn. Springer, Dordrecht

    Google Scholar 

  54. Boscaro V, Santoferrara LF, Zhang Q, Gentekaki E, Syberg-Olsen MJ, del Campo J, Keeling PJ (2018) EukRef-Ciliophora: a manually curated, phylogeny-based database of small subunit rRNA gene sequences of ciliates. Environ. Microbiol. 20:2218–2230. https://doi.org/10.1111/1462-2920.14264

    Article  CAS  PubMed  Google Scholar 

  55. Gong J, Stoeck T, Yi Z, Miao M, Zhang Q, Roberts DML et al (2009) Small subunit rRNA phylogenies show that the class Nassophorea is not monophyletic (phylum Ciliophora). J. Eukaryot. Microbiol. 56:339–347. https://doi.org/10.1111/j.1550-7408.2009.00413.x

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q, Yi Z, Fan X, Warren A, Gong J, Song W (2014) Further insights into the phylogeny of two ciliate classes Nassophorea and Prostomatea (Protista, Ciliophora). Mol. Phylogenet. Evol. 70:162–170. https://doi.org/10.1016/j.ympev.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  57. Stock A, Edgcomb V, Orsi W, Filker S, Breiner HW, Yakimov MM, Stoeck T (2013) Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. BMC Microbiol. 13:150. https://doi.org/10.1186/1471-2180-13-150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Santoferrara LF, Rubin E, Mcmanus GB (2018) Global and local DNA (meta) barcoding reveal new biogeography patterns in tintinnid ciliates. J. Plankton Res. 40:209–221. https://doi.org/10.1093/plankt/fby011

    Article  CAS  Google Scholar 

  59. Sawaya M (1940) Sobre um ciliado novo de S. Paulo: Blepharisma sinuosum sp. n. (Ciliata, Heterotricha) e sobre a sub-ordem Odontostomata, nom. nov. Bol Fac Filos Cienc S Paulo 19:303–308

    Google Scholar 

  60. Kattar M (1965) Blepharisma sinuosum Sawaya (Cilié, Hétérotriche). Bull Soc Zool 90:131–141

    Google Scholar 

  61. Paiva TDS, Silva-Neto ID (2004) Ciliate protists from Cabiúnas lagoon (Restinga de Jurubatiba, Macaé, Rio de Janeiro) with emphasis on water quality indicator species and description of Oxytricha marcili sp. n. Braz. J. Biol. 64:465–478. https://doi.org/10.1590/S1519-69842004000300010

    Article  CAS  PubMed  Google Scholar 

  62. Fernandes NM, Dias RJ, Senra MV, Soares CAG, da Silva Neto ID (2013) Morphology and 18S rDNA gene sequence of Blepharisma sinuosum Sawaya, 1940 (Ciliophora: Heterotrichea) from Brazil. Eur. J. Protistol. 49:623–633. https://doi.org/10.1016/j.ejop.2013.04.003

    Article  PubMed  Google Scholar 

  63. Foissner W (2010) Life cycle, morphology, ontogenesis, and phylogeny of Bromeliothrix metopoides nov. gen., nov. spec., a peculiar ciliate (Protista, Colpodea) from tank bromeliads (Bromeliaceae). Acta Protozool. 49:159–193

    PubMed  PubMed Central  Google Scholar 

  64. Durán-ramírez CA, Mayen-Estrada R (2018) Ciliate species from tank-less bromeliads in a dry tropical forest and their geographical distribution in the Neotropics. Zootaxa 4497:241–257. https://doi.org/10.11646/zootaxa.4497.2.5

    Article  PubMed  Google Scholar 

  65. Weisse T, Scheffel U, Stadler P, Foissner W (2013) Bromeliothrix metopoides, a boom and bust ciliate (Ciliophora, Colpodea) from tank bromeliads. Eur. J. Protistol. 49:406–419. https://doi.org/10.1016/j.ejop.2013.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol. 14:257–263. https://doi.org/10.1016/j.tim.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  67. Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA (2013) Evidence for a persistent microbial seed bank throughout the global ocean. Proc. Natl. Acad. Sci. U. S. A. 110:4651–4655. https://doi.org/10.1073/pnas.1217767110

    Article  PubMed  PubMed Central  Google Scholar 

  68. Weisse T (2014) Ciliates and the rare biosphere—community ecology and population dynamics. J. Eukaryot. Microbiol. 61:419–433. https://doi.org/10.1111/jeu.12123

    Article  PubMed  Google Scholar 

  69. Wasserman JC, de Oliveira SL, de Pontes GC, de Paiva LE (2018) Mercury contamination in the sludge of drinking water treatment plants dumping into a reservoir in Rio de Janeiro, Brazil. Environ Sci Pollut R 25:28713–28724. https://doi.org/10.1007/s11356-018-2899-9

    Article  CAS  Google Scholar 

  70. Madoni P, Romeo MG (2006) Acute toxicity of heavy metals towards freshwater ciliated protists. Environ. Pollut. 141:1–7. https://doi.org/10.1016/j.envpol.2005.08.025

    Article  CAS  PubMed  Google Scholar 

  71. Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front. Microbiol. 3:441. https://doi.org/10.3389/fmicb.2012.00441

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pfeiffer WC, Fiszman M, Malm O, Azcue JM (1986) Heavy metal pollution in the Paraíba do Sul River, Brazil. Sci. Total Environ. 58:73–79. https://doi.org/10.1016/0048-9697(86)90077-X

    Article  CAS  Google Scholar 

  73. Linde-Arias AR, Inácio AF, Novo LA, de Alburquerque C, Moreira JC (2008) Multibiomarker approach in fish to assess the impact of pollution in a large Brazilian river, Paraiba do Sul. Environ. Pollut. 156:974–979. https://doi.org/10.1016/j.envpol.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  74. Rehman A, Shakoori FR, Shakoori AR (2010) Multiple heavy metal tolerant ciliates, Oxytricha fallax and Paramecium caudatum, isolated from industrial effluents and their potential use in wastewater treatment. Pak J Zool 42:301–309

    CAS  Google Scholar 

  75. Bachy C, Dolan JR, Lopez-Garcia P, Deschamps P, Moreira D (2013) Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J. 7:244–255. https://doi.org/10.1038/ismej.2012.106

    Article  CAS  PubMed  Google Scholar 

  76. Santoferrara LF, Grattepanche JD, Katz LA, Mcmanus GB (2014) Pyrosequencing for assessing diversity of eukaryotic microbes: analysis of data on marine planktonic ciliates and comparison with traditional methods. Environ. Microbiol. 16:2752–2763. https://doi.org/10.1111/1462-2920.12380

    Article  PubMed  Google Scholar 

  77. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Luke J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sullivan MB, Velayoudon D (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. https://doi.org/10.1126/science.1261605

    Article  CAS  PubMed  Google Scholar 

  78. Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster D, Guillou L, Jaillon O, Kooistra WHCF, Logares R, Mahé F, Not F, Ogata H, Pawlowski J, Pernice MC, Probert I, Romac S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, de Vargas C (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17:4035–4049. https://doi.org/10.1111/1462-2920.12955

    Article  CAS  PubMed  Google Scholar 

  79. Onda DF, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C (2017) Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front. Mar. Sci. 4:16. https://doi.org/10.3389/fmars.2017.00016

    Article  Google Scholar 

  80. Zhao F, Filker S, Stoeck T, Xu K (2017) Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean. BMC Microbiol. 17:192. https://doi.org/10.1186/s12866-017-1103-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu Y, Vick-Majors T, Morgan-Kiss R, Priscu JC, Amaral-Zettler L (2014) Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica. Biol. Bull. 227:175–190. https://doi.org/10.1086/BBLv227n2p175

    Article  CAS  PubMed  Google Scholar 

  82. Pitsch G, Bruni EP, Forster D, Qu Z, Sonntag B, Stoeck T, Posch T (2019) Seasonality of planktonic freshwater ciliates: are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts? Front. Microbiol. 10:248. https://doi.org/10.3389/fmicb.2019.00248

    Article  PubMed  PubMed Central  Google Scholar 

  83. Grinienė E, Lesutienė J, Gorokhova E, Zemlys P, Gasiūnaitė ZR (2019) Lack of ciliate community integrity in transitional waters: a case study from the Baltic Sea. Estuar. Coast. Shelf Sci. 226:106259. https://doi.org/10.1016/j.ecss.2019.106259

    Article  Google Scholar 

  84. Kjerfve B, Schettini C, Knoppers B, Lessa G, Ferreira H (1996) Hydrology and salt balance in a large, hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuar. Coast. Shelf Sci. 42:701–725. https://doi.org/10.1006/ecss.1996.0045

    Article  CAS  Google Scholar 

  85. Dunthorn M, Klier J, Bunge J, Stoeck T (2012) Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J. Eukaryot. Microbiol. 59:185–187. https://doi.org/10.1111/j.1550-7408.2011.00602.x

    Article  CAS  PubMed  Google Scholar 

  86. Zhan Z, Li J, Xu K (2019) Ciliate environmental diversity can be underestimated by the V4 region of SSU rDNA: insights from species delimitation and multilocus phylogeny of Pseudokeronopsis (Protist, Ciliophora). Microorganisms 7:493. https://doi.org/10.3390/microorganisms7110493

    Article  CAS  PubMed Central  Google Scholar 

  87. Luciana F, Santoferrara LF (2019) Current practice in plankton metabarcoding: optimization and error management. J. Plankton Res. 41:571–582. https://doi.org/10.1093/plankt/fbz041

    Article  CAS  Google Scholar 

  88. Gong J, Dong J, Liu X, Massana R (2013) Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Ann. Anat. 164:369–379. https://doi.org/10.1016/j.protis.2012.11.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Daniel Carvalho (GenOne Biotechnologies) for his technical support with Illumina sequencing. The help of Marcelo Sales and Caroline Souza de Almeida with the photographic records was also much appreciated. This work was supported by grants from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) to N.M.F (grants number E-26/202.325/2018 and E-26/202.326/2018) and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 426648/2016-1). CNPq also provided research fellowships to P.H.C.N. (process number 140627/2019-7) and I.D.S.N. (304093/2016-5; 311577/2019-9).

Funding

This study was supported by funding agencies for science research Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi M. Fernandes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

The original online version of this article was revised: It contained an error in the assignment of the author Carlos A. G. Soares name.

Electronic supplementary material

ESM 1

(DOCX 12785 kb)

Table S1

OTUs assigned to Ciliophora, their taxonomic annotations, and sklearn confidence values (TXT 31 kb)

Table S2

Richness and alpha-diversity measures (DOCX 13 kb)

Table S3

Ciliate OTU Feature-IDs and their respective % identities to top-hit sequences from GenBank database (TXT 19 kb)

Table S4

Absolute abundances of ciliate genera per sample (TXT 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, N.M., Campello-Nunes, P.H., Paiva, T.S. et al. Ciliate Diversity From Aquatic Environments in the Brazilian Atlantic Forest as Revealed by High-Throughput DNA Sequencing. Microb Ecol 81, 630–643 (2021). https://doi.org/10.1007/s00248-020-01612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01612-8

Keywords

Navigation