Skip to main content
Log in

Strengths and Biases of High-Throughput Sequencing Data in the Characterization of Freshwater Ciliate Microbiomes

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Molecular surveys of eukaryotic microbial communities employing high-throughput sequencing (HTS) techniques are rapidly supplanting traditional morphological approaches due to their larger data output and reduced bench work time. Here, we directly compare morphological and Illumina data obtained from the same samples, in an effort to characterize ciliate faunas from sediments in freshwater environments. We show how in silico processing affects the final outcome of our HTS analysis, providing evidence that quality filtering protocols strongly impact the number of predicted taxa, but not downstream conclusions such as biogeography patterns. We determine the abundance distribution of ciliates, showing that a small fraction of abundant taxa dominates read counts. At the same time, we advance reasons to believe that biases affecting HTS abundances may be significant enough to blur part of the underlying biological picture. We confirmed that the HTS approach detects many more taxa than morphological inspections, and highlight how the difference varies among taxonomic groups. Finally, we hypothesize that the two datasets actually correspond to different conceptions of “diversity,” and consequently that neither is entirely superior to the other when investigating environmental protists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caron DA, Worden AZ, Countway PD, Demir E, Heidelberg KB (2009) Protists are microbes too: a perspective. ISME J 3:4–12

    Article  CAS  PubMed  Google Scholar 

  2. Weisse T (2008) Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers Conserv 17:243–259

    Article  Google Scholar 

  3. Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308

    Article  CAS  PubMed  Google Scholar 

  4. Weisse T, Müller H (1998) Planktonic protozoa and the microbial food web in Lake Constance. Arch Hydrobiol 53:223–254

    Google Scholar 

  5. de Vargas C, Audic S, Henry N, et al. (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. doi:10.1126/science.1261605

    Article  PubMed  Google Scholar 

  6. Martin C (2015) Biology’s dark matter. Curr Biol 25:R301–R307

    Article  CAS  PubMed  Google Scholar 

  7. Dolan JR, Landry MR, Ritchie ME (2013) The species-rich assemblages of tintinnids (marine planktonic protists) are structured by mouth size. ISME J 7:1237–1243

    Article  PubMed  PubMed Central  Google Scholar 

  8. Finlay BJ, Esteban GF (1998) Freshwater protozoa: biodiversity and ecological function. Biodivers Conserv 7:1163–1186

    Article  Google Scholar 

  9. Graham JM, Kent AD, Lauster GH, Yannarell AC, Graham LE, Triplett EW (2004) Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Microb Ecol 48:528–540

    Article  CAS  PubMed  Google Scholar 

  10. Bass D, Richards TA, Matthai L, Marsh V, Cavalier-Smith T (2007) DNA evidence for global dispersal and probable endemicity of protozoa. BMC Evol Biol 7:162. doi:10.1186/1471-2148-7-162

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edgcomb VP, Kysela DT, Teske A, de Vera GA, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  13. Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  CAS  PubMed  Google Scholar 

  14. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2010) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:140–149

    Google Scholar 

  15. Grossmann L, Jensen M, Heider D, et al. (2016) Protistan community analysis: key findings of a large-scale molecular sampling. ISME J 10:2269–2279

  16. Logares R, Audic S, Bass D, et al. (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:813–821

    Article  CAS  PubMed  Google Scholar 

  17. Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 1:21–31

    Article  Google Scholar 

  18. Sunagawa S, Coelho LP, Chaffron S, et al. (2015) Structure and function of the global ocean microbiome. Science 348:1261359. doi:10.1126/science.1261359

    Article  PubMed  Google Scholar 

  19. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biodiversity”. Proc Natl Acad Sci U S A 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324

    Article  CAS  PubMed  Google Scholar 

  21. Fonseca VG, Nichols B, Lallias D, Quince C, Carvalho GR, Power DM, Creer S (2012) Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenomic analyses. Nucleic Acids Res 40:e66. doi:10.1093/nar/gks002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310. doi:10.1371/journal.pone.0027310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidt TSB, Matias Rodrigues JF, von Mering C (2015) Limits to robustness and reproducibility in the demarcation of operational taxonomic units. Environ Microbiol 17:1689–1706

    Article  CAS  PubMed  Google Scholar 

  24. Massana R, Gobet A, Audic S, et al. (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17:4035–4049

    Article  CAS  PubMed  Google Scholar 

  25. Stoeck T, Breiner HW, Filker S, Ostermaier V, Kammerlander B, Sonntag B (2014) A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ Microbiol 16:430–444

    Article  CAS  PubMed  Google Scholar 

  26. Majaneva M, Hyytiäinen K, Varvio SL, Nagai S, Blomster J (2015) Bioinformatic amplicon read processing strategies strongly affect eukaryotic diversity and the taxonomic composition of communities. PLoS One 10:e0130035. doi:10.1371/journal.pone.0130035

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bachy C, Dolan JR, López-García P, Deschamps P, Moreira D (2013) Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J 7:244–255

    Article  CAS  PubMed  Google Scholar 

  28. Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F (2014) Ciliates and the rare biosphere: a review. J Eukaryot Microbiol 61:404–409

    Article  PubMed  Google Scholar 

  29. Medinger R, Nolte V, Pandey RV (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pawlowski J, Esling P, Lejzerowicz F, Cedhagen T, Wilding TA (2014) Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Mol Ecol Resour 14:1129–1140

    Article  CAS  PubMed  Google Scholar 

  31. Rossi A, Boscaro V, Carducci D, Serra V, Modeo L, Verni F, Fokin SI, Petroni G (2016) Ciliate communities and hidden biodiversity in freshwater biotopes of the Pistoia province (Tuscany, Italy). Eur J Protistol 53:11–19

    Article  PubMed  Google Scholar 

  32. Dias RJP, Wieloch AH, D’Agosto M (2008) The influence of environmental characteristics on the distribution of ciliates (protozoa, Ciliophora) in an urban stream of Southeast Brazil. Braz J Biol 68:287–295

    Article  CAS  PubMed  Google Scholar 

  33. Madoni P, Braghiroli S (2007) Changes in the ciliate assemblage along a fluvial system related to physical, chemical and geomorphological characteristics. Eur J Protistol 43:67–75

    Article  PubMed  Google Scholar 

  34. Lara E, Berney C, Harms H, Chatzinotas A (2007) Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil. FEMS Microbiol Ecol 62:365–373

    Article  CAS  PubMed  Google Scholar 

  35. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  36. Ludwig W, Strunk O, Westram R, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunthorn M, Klier J, Bunge J, Stoeck T (2012) Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J Eukaryot Microbiol 59:185–187

    Article  CAS  PubMed  Google Scholar 

  38. Dunthorn M, Otto J, Berger SA et al. (2014) Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol Biol Evol 31:993–1009

  39. Caporaso JG, Kuczynski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  41. Lynn DH (2008) The ciliated protozoa. Characterization, classification, and guide to the literature, 3rd edn. Springer, Dordrecht

  42. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  43. Richards TA, Leonard G, Mahé F, et al. (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc Biol Sci 282:20152243. doi:10.1098/rspb.2015.2243

    Article  PubMed  PubMed Central  Google Scholar 

  44. Esling P, Lejzerowicz F, Pawlowski J (2015) Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Res 43:2513–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Filker S, Sommaruga R, Vila I, Stoeck T (2016) Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol Ecol 25:2286–2301

  46. Massana R, del Campo J, Sieracki ME, Audic S, Logares R (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866

    Article  PubMed  Google Scholar 

  47. del Campo J, Mallo D, Massana R, de Vargas C, Richards TA, Ruiz-Trillo I (2015) Diversity and distribution of unicellular opisthokonts along the European coast analysed using high-throughput sequencing. Environ Microbiol 17:3195–3207

    Article  PubMed  PubMed Central  Google Scholar 

  48. Egge ES, Johannessen TV, Andersen T, Eikrem W, Bittner L, Larsen A, Sandaa RA, Edvardsen B (2015) Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Mol Ecol 24:3026–3042

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nanjappa D, Audic S, Romac S, Kooistra WHCF, Zingone A (2014) Assessment of species diversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach. PLoS One 9:e103810. doi:10.1371/journal.pone.0103810

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chao A, Li PC, Agatha S, Foissner W (2006) A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114:479–493

    Article  Google Scholar 

  52. Nebel M, Pfabel C, Stock A, Dunthorn M, Stoeck T (2011) Delimiting operational taxonomic units for assessing ciliate environmental diversity using small-subunit rRNA gene sequences. Environ Microbiol Rep 3:154–158

    Article  CAS  PubMed  Google Scholar 

  53. Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosaf Res 6:37–53

    Article  CAS  Google Scholar 

  54. Vlassov VV, Laktionov PP, Rykova EY (2007) Extracellular nucleic acids. BioEssays 29:654–667

    Article  CAS  PubMed  Google Scholar 

  55. Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

  56. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  Google Scholar 

  57. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  CAS  PubMed  Google Scholar 

  58. Gong J, Dong J, Liu X, Massana R (2013) Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164:369–379

    Article  CAS  PubMed  Google Scholar 

  59. Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58:233–267

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Riley JL, Katz LA (2001) Widespread distribution of extensive chromosomal fragmentation in ciliates. Mol Biol Evol 18:1372–1377

    Article  CAS  PubMed  Google Scholar 

  61. Visco JA, Apothéloz-Perret-Gentil L, Cordonier A, Esling P, Pillet L, Pawlowski J (2015) Environmental monitoring: inferring the Diatom Index from next-generation sequencing data. Environ Sci Technol 49:7597–7605

  62. Fenchel T (1987) Ecology of protozoa. The biology of free-living phagotrophic protists. Springer-Verlag, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Simone Gabrielli for his help in graphical artwork, Valentina Serra and Daniela Carducci for assistance during sampling, and Brad Jones for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Boscaro.

Electronic supplementary material

.

Online Resource 1

Additional experimental procedures details. (PDF 90 kb)

.

Online Resource 2

Number of morphological and Illumina OTUs, divided by ciliate class, in each of the 12 samples. Contig abundances are also reported. (PDF 2444 kb)

.

Online Resource 3

Additional pipeline comparisons and statistical test results. (PDF 2468 kb)

.

Online Resource 4

Rarefaction curves calculated on the 12 samples. (TIFF 356 kb)

.

Online Resource 5

Number of contigs (A) and OTUs (B) assigned to each ciliate subclass in the entire analysis (pipeline U.s.). Some ciliate classes are not subdivided in subclasses [41]; in those cases, we maintained class names (underlined). (TIFF 1167 kb)

.

Online Resource 6

Relative number of OTUs per sample, divided by class, according to the morphological analysis (A) and the HTS survey (pipeline U.s.) (B). (JPEG 224 kb)

.

Online Resource 7

nMDS analysis performed on presence/absence morphological data from all samples, employing Bray-Curtis distances. Symbols represent the 4 sampling sites according to the legend. The gradient analysis was performed on abiotic factors, represented by vectors. A similar graph including more samples from the same and other sites belonging to the investigated area can be consulted in Rossi et al. [31]. T, temperature; O, oxygen concentration; A, altitude. (EPS 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscaro, V., Rossi, A., Vannini, C. et al. Strengths and Biases of High-Throughput Sequencing Data in the Characterization of Freshwater Ciliate Microbiomes. Microb Ecol 73, 865–875 (2017). https://doi.org/10.1007/s00248-016-0912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0912-8

Keywords

Navigation