Skip to main content
Log in

Artificial Intelligence for the Evaluation of Operational Parameters Influencing Nitrification and Nitrifiers in an Activated Sludge Process

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nitrification at a full-scale activated sludge plant treating municipal wastewater was monitored over a period of 237 days. A combination of fluorescent in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qPCR) were used for identifying and quantifying the dominant nitrifiers in the plant. Adaptive neuro-fuzzy inference system (ANFIS), Pearson’s correlation coefficient, and quadratic models were employed in evaluating the plant operational conditions that influence the nitrification performance. The ammonia-oxidizing bacteria (AOB) abundance was within the range of 1.55 × 108–1.65 × 1010 copies L−1, while Nitrobacter spp. and Nitrospira spp. were 9.32 × 109–1.40 × 1011 copies L−1 and 2.39 × 109–3.76 × 1010 copies L−1, respectively. Specific nitrification rate (qN) was significantly affected by temperature (r 0.726, p 0.002), hydraulic retention time (HRT) (r −0.651, p 0.009), and ammonia loading rate (ALR) (r 0.571, p 0.026). Additionally, AOB was considerably influenced by HRT (r −0.741, p 0.002) and temperature (r 0.517, p 0.048), while HRT negatively impacted Nitrospira spp. (r −0.627, p 0.012). A quadratic combination of HRT and food-to-microorganism (F/M) ratio also impacted qN (r 2 0.50), AOB (r 2 0.61), and Nitrospira spp. (r 2 0.72), while Nitrobacter spp. was considerably influenced by a polynomial function of F/M ratio and temperature (r 2 0.49). The study demonstrated that ANFIS could be used as a tool to describe the factors influencing nitrification process at full-scale wastewater treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim YM, Cho HU, Lee DS, Park D, Park JM (2011) Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process. Water Res 45:5785–5795. doi:10.1016/j.watres.2011.08.063

    Article  CAS  PubMed  Google Scholar 

  2. Angel R, Asaf L, Ronen Z, Nejidat A (2010) Nitrogen transformations and diversity of ammonia-oxidizing bacteria in a desert ephemeral stream receiving untreated wastewater. Microb Ecol 59:46–58

    Article  CAS  PubMed  Google Scholar 

  3. Campos J, Garrido-Fermindez J, Mendez R, Lema J (1999) Nitrification at high ammonia loading rates in an activated sludge unit. Bioresour Technol 68:141–148

    Article  CAS  Google Scholar 

  4. Nasr M, Moustafa M, Seif H, El Kobrosy G (2011) Modelling and simulation of German BIOGEST/EL-AGAMY wastewater treatment plants—Egypt using GPS-X simulator. Alexandria Eng J 50:351–357

    Article  CAS  Google Scholar 

  5. Third K, Paxman J, Schmid M, Strous M, Jetten M, Cord-Ruwisch R (2005) Enrichment of anammox from activated sludge and its application in the CANON process. Microb Ecol 49:236–244

    Article  CAS  PubMed  Google Scholar 

  6. Zhang L, Jiang J, Yang J, Hira D, Furukawa K (2012) High rate nitrogen removal by the CANON process at ambient temperature. Water Sci Technol : J Int Assoc Water Pollut Res 65:1826–1833

    Article  CAS  Google Scholar 

  7. Hu J, Li D, Liu Q, Tao Y, He X, Wang X, Li X, Gao P (2009) Effect of organic carbon on nitrification efficiency and community composition of nitrifying biofilm. J Environ Sci 21:387–394. doi:10.1016/S1001-0742(08)62281-0

    Article  CAS  Google Scholar 

  8. Fulweiler RW, Emery HE, Heis EM, Berounsky VM (2011) Assessing the role of pH in determining water column nitrification rates in a coastal system. Estuar Coasts 34:1095–1102

    Article  CAS  Google Scholar 

  9. Stark J (1996) Modeling the temperature response of nitrification. Biogeochemistry 35:433–445

    Article  Google Scholar 

  10. Huang H, Gedalanga P, Olson BH (2010) Distribution of nitrobacter and nitrospira communities in an aerobic activated sludge bioreactor and their contributions to nitrite oxidation. WEFTEC

  11. Wu YJ, Whang LM, Chang MY, Fukushima T, Lee YC, Cheng SS, Hsu SF, Chang CH, Shen W, Yang CY, Fu R, Tsai TY (2013) Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresour Technol 141:35–40. doi:10.1016/j.biortech.2013.02.108

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Zhang Y, Yang M, Kamagata Y (2013) Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Front Environ Sci Eng China 7:43–48. doi:10.1007/s11783-012-0397-8

    Article  CAS  Google Scholar 

  13. Klemetti R (2010) Modelling the start-up of biological phosphorus removal at low temperature. Aato University

  14. Nasr M, Mahmoud AED, Fawzy M, Radwan A (2015) Artificial intelligence modeling of cadmium(II) biosorption using rice straw. Appl Water Sci. doi:10.1007/s13201-015-0295x

    Google Scholar 

  15. Nasr M, Moustafa M, Seif H, El Kobrosy G (2012) Application of artificial neural network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alexandria Eng J 51:37–43

    Article  CAS  Google Scholar 

  16. Nasr M, Moustafa M, Seif H, El-Kobrosy G (2014) Application of fuzzy logic control for Benchmark simulation model.1. Sustain Environ Res 24:235–243

    Google Scholar 

  17. Nasr M, Ateia M, Hassan K (2015) Artificial intelligence for greywater treatment using electrocoagulation process. Sep Sci Technol. doi:10.1080/01496395.2015.1062399

    Google Scholar 

  18. Daims H, Wagner M (2010) The microbiology of nitrogen removal. In: Seviour RJ, Nielsen PH (eds) Microbial ecology of activated sludge. IWA, London, pp 259–280

    Google Scholar 

  19. Fuchs BM, Pernthaler J, Amann R (2007) Single cell identification by fluorescence in situ hybridization. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. ASM Press, Washington D.C., pp 886–896

    Google Scholar 

  20. Nielsen JL (2009) Protocol for fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotides. In: Nielsen PH, Daims H, Lemmer H (eds) FISH handbook for biological wastewater treatment. IWA Publishing, London, pp 73–84

    Google Scholar 

  21. Bassin JP, Kleerebezem R, Muyzer G, Rosado AS, van Loosdrecht MC, Dezotti M (2012) Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. Appl Microbiol Biotechnol 93:1281–1294. doi:10.1007/s00253-011-3428-7

    Article  CAS  PubMed  Google Scholar 

  22. Wu P, JI X, Song X, Shen Y (2014) Mechanism of efficient nutrient removal and microbial analysis of a combined anaerobic baffled reactor–membrane bioreactor process. Int J Environ Sci Technol 11:1611–1618

    Article  CAS  Google Scholar 

  23. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lienen T, Kleybocker A, Verstraete W, Wurdemann H (2014) Moderate temperature increase leads to disintegration of floating sludge and lower abundance of the filamentous bacterium Microthrix parvicella in anaerobic digesters. Water Res 65:203–212. doi:10.1016/j.watres.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  25. Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P, Verstraete W, Boon N (2007) Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl Microbiol Biotechnol 75:211–221. doi:10.1007/s00253-006-0805-8

    Article  CAS  PubMed  Google Scholar 

  26. Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442. doi:10.1128/AEM.02858-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. APHA (1998) Standard Methods for the Examination of Water and Wastewater American Public Health Association

  28. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse. Metcalf and Eddy Inc. McGraw- Hill, New York

    Google Scholar 

  29. Jang JS (1993) ANFIS: adaptive-Network-based Fuzzy Inference Systems. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  30. Azar A (2011) Adaptive neuro-fuzzy system as a novel approach for predicting post-dialysis urea rebound. Int J Intell Syst Technol Appl 10:302–330

    Google Scholar 

  31. Fawzy M, Nasr M, Abdel-Gaber A, Fadly S (2015) Biosorption of Cr(VI) from aqueous solution using agricultural wastes, with artificial intelligence approach. Sep Sci Technol. doi:10.1080/01496395.2015.1115068

    Google Scholar 

  32. Watson S, Valois F, Waterbury J (1981) The family Nitrobacteraceae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 1005–1022

    Chapter  Google Scholar 

  33. Tchobanoglous G, Burton F (1991) Wastewater engineering treatment, disposal and reuse. McGraw-Hill, New York

    Google Scholar 

  34. Mozumder MS, Picioreanu C, van Loosdrecht MC, Volcke EI (2013) Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor. Environ Technol 35:1027–1037

    Article  Google Scholar 

  35. Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 37:1371–1377

    Article  CAS  PubMed  Google Scholar 

  36. Winkler MK, Bassin JP, Kleerebezem R, Sorokin DY, van Loosdrecht MC (2012) Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Appl Microbiol Biotechnol 94:1657–1666. doi:10.1007/s00253-012-4126-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu G (2012) Nitrification performance of activated sludge under low dissolved oxygen conditions. PhD, Missouri University of Science and Technology

  38. Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81:665–680

    Article  CAS  PubMed  Google Scholar 

  39. Nogueira R, Melo LF (2006) Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnol Bioeng 95:169–175. doi:10.1002/bit.21004

    Article  CAS  PubMed  Google Scholar 

  40. Fukushima T, Whang LM, Chiang TY, Lin YH, Chevalier LR, Chen MC, Wu YJ (2013) Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Appl Microbiol Biotechnol 97:6513–6523. doi:10.1007/s00253-012-4436-y

    Article  CAS  PubMed  Google Scholar 

  41. Whang LM, Chien IC, Yuan SL, Wu YJ (2009) Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants. Chemosphere 75:234–242

    Article  CAS  PubMed  Google Scholar 

  42. Tarre S, Green M (2004) High-rate nitrification at low pH in suspended and attached biomass reactors. Appl Environ Microbiol 70:6481–6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu M, Schnorr J, Keibler B, Simon HM (2012) Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Appl Environ Microbiol 78:2137–2146. doi:10.1128/AEM.06845-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nogueira R, Melo L, Purkhold U, Wuertz S, Wagner M (2002) Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Res 36:469–481

    Article  CAS  PubMed  Google Scholar 

  45. Kim D, Lee D, Keller J (2006) Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol 97:459–468

    Article  CAS  PubMed  Google Scholar 

  46. Park J, Byun I, Park S, Park D (2008) Nitrifying bacterial communities and its activities in aerobic biofilm reactors under different temperature conditions. Korean J Chem Eng 25:1448–1455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors hereby acknowledge the Durban University of Technology and National Research Foundation for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizal Bux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awolusi, O.O., Nasr, M., Kumari, S. et al. Artificial Intelligence for the Evaluation of Operational Parameters Influencing Nitrification and Nitrifiers in an Activated Sludge Process. Microb Ecol 72, 49–63 (2016). https://doi.org/10.1007/s00248-016-0739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0739-3

Keywords

Navigation