Skip to main content

Advertisement

Log in

Nitrogen Transformations and Diversity of Ammonia-Oxidizing Bacteria in a Desert Ephemeral Stream Receiving Untreated Wastewater

  • ENVIRONMENTAL MICROBIOLOGY
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Levels of inorganic nitrogen species (ammonia, nitrite, and nitrate), ammonia oxidation potential (AOP), and diversity of ammonia-oxidizing bacteria (AOB) were studied in the sediments of a 50-km-long segment of an ephemeral stream in the Negev desert, receiving untreated wastewater. Water analysis in downstream sampling points showed reductions of 91.7% in biological oxygen demand, 87.7% in chemical oxygen demand, 73.9% in total nitrogen, and 72.8% in total ammonia nitrogen. Significant AOP levels in the sediment were detected mainly in the fall and spring seasons. Denaturing gradient gel electrophoresis of AOB 16S rRNA gene fragments showed that in most sampling points, the streambed was dominated by Nitrosospira cluster 3 strains similar to those dominating the stream bank’s soils and sediments in nearby springs. Nitrosomonas strains introduced by discharged wastewater and others dominated some sections of the stream characterized by high organic carbon levels. The results suggest that climatic conditions in the Negev desert select for AOB belonging to Nitrosospira cluster 3, and these conditions dominate the aquatic environment effect along most of the stream sections. In addition, the nitrification–denitrification processes were not sufficient to reduce nitrogen levels in the sediment and prevent the eutrophication of some sections of the stream ecosystem. Thus, the discharge of high nitrogen wastewater into desert streams should be done carefully as it may endanger the already fragile ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aakra A, Utaker JB, Nes IF, Bakken LR (1999) An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 39:23–31

    Article  CAS  PubMed  Google Scholar 

  2. Anderson NJ, Rippey B (1994) Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwater Biol 32:625–639

    Article  CAS  Google Scholar 

  3. APHA (1985) Standard methods for the examination of water and wastewater. APHA AWWA WPCF, Washington

    Google Scholar 

  4. Avrahami S, Conrad R, Braker G (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68:5685–5692

    Article  CAS  PubMed  Google Scholar 

  5. Avrahami S, Liesack W, Conrad R (2003) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 5:691–705

    Article  CAS  PubMed  Google Scholar 

  6. Bothe H, Jost G, Schloter M, Ward BB, Witzel K-P (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690

    Article  CAS  PubMed  Google Scholar 

  7. Boyd CE (1995) Bottom soils, sediment and pond aquaculture. Chapman & Hall, New York

    Google Scholar 

  8. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  9. Cébron A, Coci M, Garnier J, Laanbroek HJ (2004) Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl Environ Microbiol 70:6726–6737

    Article  PubMed  CAS  Google Scholar 

  10. De Bie M, Speksnijder AGCL, Kowalchuk GA, Schurman T, Zwart G, Stephen JR, Diekmann OE, Laanbroek HJ (2001) Shifts in the dominant populations of ammonia-oxidizing beta -subclass Proteobacteria along the eutrophic Schelde Estuary. Aquatic Microb Ecol 23:225–236

    Article  Google Scholar 

  11. Ferree MA, Shannon RD (2001) Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Res 35:327–332

    Article  CAS  PubMed  Google Scholar 

  12. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet M, Aragno F, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  CAS  PubMed  Google Scholar 

  13. Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13

    Article  CAS  PubMed  Google Scholar 

  14. Gerards S, Duyts H, Laanbroek HJ (1998) Ammonium-induced inhibition of ammonium-starved Nitrosomonas europaea cells in soil and sand slurries. FEMS Microbiol Ecol 26:269–280

    Article  CAS  Google Scholar 

  15. Hassan MA, Egozi R (2001) Impact of wastewater discharge on the channel morphology of ephemeral streams. Earth Surf Processes Landf 26:1285–1302

    Article  Google Scholar 

  16. Hastings RC, Ceccherini MT, Miclaus N, Saunders JR, Bazzicalupo M, McCarthy AJ (1997) Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiol Ecol 23:45–54

    Article  CAS  Google Scholar 

  17. Horz H-P, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci U S A 101:15136–15141

    Article  CAS  PubMed  Google Scholar 

  18. Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Koops H-P, Pommerening-Roser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  20. Koops H-P, Purkhold U, Pommerening-Roser A, Timmermann G, Wagner M (2003) The lithoautotrophic ammonia-oxidizing bacteria. In: Dworkin M et al. (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3, 13. Springer, New-York. http://link.springer-ny.com/link/service/books/10125/

  21. Kowalchuk G, Stephen J, De Boer W, Prosser J, Embley T, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    CAS  PubMed  Google Scholar 

  22. Kowalchuk GA, Bodelier PLE, Heilig GHJ, Stephen JR, Laanbroek HJ (1998) Community analysis of ammonia-oxidizing bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridization. FEMS Microbiol Ecol 27:339–350

    Article  CAS  Google Scholar 

  23. Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR, Woldendorp JW (2000) Changes in the community structure of ammonia oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2:99–110

    Article  CAS  PubMed  Google Scholar 

  24. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev of Microbiol 55:485–529

    Article  CAS  Google Scholar 

  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  26. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  27. Leps J, Smilauer P (1999) Multivariate analysis of ecological data. Faculty of Biological Sciences, University of South Bohemia, Ceske Budejovice

    Google Scholar 

  28. Mahmood S, Freitag TE, Prosser JI (2006) Comparison of PCR primer-based strategies for characterization of ammonia oxidizer communities in environmental samples. FEMS Microbiol Ecol 56:482–493

    Article  CAS  PubMed  Google Scholar 

  29. McCaig AE, Embley TM, Prosser JI (1994) Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett 120:363–367

    Article  CAS  PubMed  Google Scholar 

  30. Montuelle B, Balandras B, Volat B, Feray C (2003) Effect of wastewater treatment plant discharges on the functional nitrifying communities in river sediments. Aquat Ecosyst Health Manag 6:381–390

    Article  CAS  Google Scholar 

  31. Nakamura Y, Satoh H, Kindaichi T, Okabe S (2006) Community structure, abundance, and in situ activity of nitrifying bacteria in river sediments as determined by the combined use of molecular techniques and microelectrodes. Environ Sci Technol 40:1532–1539

    Article  CAS  PubMed  Google Scholar 

  32. Nejidat A (2005) Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils. FEMS Microbiol Ecol 52:21–29

    Article  CAS  PubMed  Google Scholar 

  33. Nicol GW, Schleper C (2006) Ammonia-oxidizing Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    Article  CAS  PubMed  Google Scholar 

  34. Oved T, Shaviv A, Goldrath T, Mandelbaum RT Minz D (2001) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67:3426–3433

    Article  CAS  PubMed  Google Scholar 

  35. Princic A, Mahne I, Megusar F, Paul EA, Tiedje JM (1998) Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl Environ Microbiol 64:3584–3590

    CAS  PubMed  Google Scholar 

  36. Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  PubMed  Google Scholar 

  37. Shapira DA, Mazor G (2004) Pollutants loadings in streams: a comparison between the years 1994, 2000, 2001 and 2003. The Israeli Ministry of the Environment, Jerusalem in Hebrew

    Google Scholar 

  38. Shoaf W, Lium B (1976) Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol Oceanogr 21:926–928

    Article  CAS  Google Scholar 

  39. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  PubMed  Google Scholar 

  40. Soil and Plant Analysis Council (2000) Soil analysis handbook of reference methods. CRC, Boca Raton

    Google Scholar 

  41. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21(4):456–463

    Article  CAS  PubMed  Google Scholar 

  42. Stehr G, Bottcher B, Dittberner P, Rath G, Koops H-P (1995) The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol Ecol 17:177–186

    Article  CAS  Google Scholar 

  43. Stephen JR, Kowalchuk GA, Brun M-AV, McCaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of beta -subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    CAS  PubMed  Google Scholar 

  44. Tal A, Al Khatib N, Asaf L, Assi A, Nassar A, Abu Sadah M, Gazith A, Laronne JB, Zeev R, Hirshkovitz Y, Halawani D, Nagouker N, Angel R, Akerman H, Diabat M (2006) Watershed modeling: biomonitoring and economic analysis to determine optimal restoration strategies for transboundary streams. AIES, Eilot

    Google Scholar 

  45. Ter Braak CJF, Smilauer P (1998) Canoco 4. Centre for Biometry Wageningen, Wageningen

    Google Scholar 

  46. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  Google Scholar 

  47. Wilhelm R, Abeliovich A, Nejidat A (1998) Effect of long-term ammonia starvation on the oxidation of ammonia and hydroxylamine by Nitrosomonas europaea. J Biochem (Tokyo) 124:811–815

    CAS  Google Scholar 

  48. Yuan F, Ran W, Shen Q, Wang D (2005) Characterization of nitrifying bacteria communities of soils from different ecological regions of China by molecular and conventional methods. Biol Fertil Soils 41:22–27

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Middle East Research and Cooperation (MERC) Program of the U.S. Agency for International Development: Buraeu for Economic Growth, Agriculture and Trade. Project number M23-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nejidat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angel, R., Asaf, L., Ronen, Z. et al. Nitrogen Transformations and Diversity of Ammonia-Oxidizing Bacteria in a Desert Ephemeral Stream Receiving Untreated Wastewater. Microb Ecol 59, 46–58 (2010). https://doi.org/10.1007/s00248-009-9555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9555-3

Keywords

Navigation